ELECTROCHEMISTRY WORKSHEET #3

1. In a redox titration 12.50 mL of 0.0800 mol/L K₂Cr₂O_{7 (aq)} was used in acidic solution to oxidize Sn²⁺ (aq) ions to Sn⁴⁺ (aq) ions. The volume of K₂Cr₂O_{7 (aq)} used was just sufficient to oxidize all the Sn²⁺ (aq) in 10.0 mL of the solution. Calculate the concentration of the Sn²⁺ (aq) ions in the solution according to the following unbalanced equation.

(Ans: 0.300 mol/L)

$$Cr_2O_7^{2-}{}_{(aq)} + Sn^{2+}{}_{(aq)} \rightarrow Sn^{4+}{}_{(aq)} + Cr^{3+}{}_{(aq)}$$

2. The copper (II) ions in a solution can be converted to copper metal by trickling the solution over scrap iron. The reaction produced iron (II) ions from scrap iron. If the process produces 25.00 L of solution containing 0.00200 mol/L of $Fe^{2+}_{(aq)}$ ions, what mass of copper is produced? (Ans: 3.18q)

$$Cu^{2+}_{(aq)} + Fe_{(s)} \rightarrow Fe^{2+}_{(aq)} + Cu_{(s)}$$

3. What volume of 0.0500 mol/L KmnO_{4 (aq)} is needed to oxidize all the Br⁻ (aq) ions in 25.0 mL of an acidic 0.200 mol/L NaBr_(aq) solution according to the following unbalanced equation.

(Ans: v = 20.0mL)

 $MnO_{4}^{-}_{(aq)} + Br^{-}_{(aq)} \rightarrow Br_{2}_{(aq)} + Mn^{2+}_{(aq)}$

4. Aqueous solutions of hydrogen peroxide sold in pharmacies are usually approximately 3% H₂O₂ by mass. However, in solution, hydrogen peroxide decomposes into water and oxygen.

What is the percent by mass of a solution of hydrogen peroxide, H_2O_2 , prepared from 1.423 g of H_2O_2 which is titrated with 40.22 mL of 0.01143 mol/L KMnO_{4(aq)}.

The reaction occurs in an acidified solution.

(Hint: Find mass of H_2O_2 actually present, then mass %) (Ans: 2.747%)

Balanced equation:

$$5H_2O_{2(aq)} + 2MnO_4(aq) + 6H^{+}(aq) \rightarrow 2Mn^{2+}(aq) + 5O_{2(g)} + 8H_2O_{(l)}$$