ELECTROCHEMISTRY WORKSHEET \#3

1. In a redox titration 12.50 mL of $0.0800 \mathrm{~mol} / \mathrm{L} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (aq) was used in acidic solution to oxidize $\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}$ ions to $\mathrm{Sn}^{4+}{ }_{(\mathrm{aq})}$ ions. The volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7 \text { (aq) }}$ used was just sufficient to oxidize all the $\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}$ in 10.0 mL of the solution. Calculate the concentration of the $\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}$ ions in the solution according to the following unbalanced equation.
(Ans: $0.300 \mathrm{~mol} / \mathrm{L}$)

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}{ }_{(\mathrm{aq})}+\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Sn}^{4+}{ }_{(\mathrm{aq})}+\mathrm{Cr}^{3+}{ }_{(\mathrm{aq})}
$$

2. The copper (II) ions in a solution can be converted to copper metal by trickling the solution over scrap iron. The reaction produced iron (II) ions from scrap iron. If the process produces 25.00 L of solution containing $0.00200 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}$ ions, what mass of copper is produced?
(Ans: 3.18 g)

$$
\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Fe}_{(\mathrm{s})} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Cu}_{(\mathrm{s})}
$$

3. What volume of $0.0500 \mathrm{~mol} / \mathrm{L} \mathrm{KmnO}_{4 \text { (aq) }}$ is needed to oxidize all the Br^{-} (aq) ions in 25.0 mL of an acidic $0.200 \mathrm{~mol} / \mathrm{L} \mathrm{NaBr}_{(\mathrm{aq})}$ solution according to the following unbalanced equation.
(Ans: $v=20.0 \mathrm{~mL}$)

$$
\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+\mathrm{Br}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{Br}_{2(\mathrm{aq})}+\mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}
$$

4. Aqueous solutions of hydrogen peroxide sold in pharmacies are usually approximately $3 \% \mathrm{H}_{2} \mathrm{O}_{2}$ by mass. However, in solution, hydrogen peroxide decomposes into water and oxygen.

What is the percent by mass of a solution of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, prepared from 1.423 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ which is titrated with 40.22 mL of 0.01143 $\mathrm{mol} / \mathrm{L} \mathrm{KMnO}_{4(\mathrm{aq})}$.
The reaction occurs in an acidified solution.
(Hint: Find mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ actually present, then mass \%)
(Ans:
2.747\%)

Balanced equation:

$$
5 \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}+2 \mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+5 \mathrm{O}_{2(\mathrm{~g})}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

