Chemistry 12

Worksheet 1-1 - Measuring Reaction Rates

1. A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the reaction is:

$$
\mathrm{Zn}_{(s)}+2 \mathrm{HCl}_{(a q)} \quad \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{ZnCl}_{2(a q)}
$$

A piece of zinc is dropped into 1.00 L of 0.100 M HCl and the following data were obtained:

Time	Mass of Zinc
0 s	0.016 g
4 s	0.014 g
8 s	0.012 g
12 s	0.010 g
16 s	0.008 g
20 s	0.006 g

a) Calculate the Rate of Reaction in grams of Zn consumed per second.

Answer \qquad
b) Calculate the Rate of Reaction in moles of Zn consumed per second.

Answer \qquad
c) Write out the complete ionic equation for the reaction.
d) What will happen to the $\left[\mathrm{H}^{+}\right]$as the reaction proceeds? \qquad
e) What will happen to the $[\mathrm{Cl}]$ as the reaction proceeds? \qquad
2. When magnesium is reacted with dilute hydrochloric acid (HCl), a reaction occurs in which hydrogen gas and magnesium chloride is formed.
a) Write a balanced formula equation for this reaction.
b) If the rate of consumption of magnesium is $5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$, find the rate of consumption of HCl in moles/s.

Answer \qquad
c) If the rate of consumption of magnesium is $5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$, find the rate of production of H_{2} in g / s.

Answer \qquad
d) If the rate of consumption of magnesium is $5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$, find the rate of production of H_{2} in L/s (@SLC).

Answer \qquad
e) If the rate of consumption of magnesium is $5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$, find the mass of Mg consumed in 5.0 minutes.

Answer
3. When butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ is burned in air (oxygen), the products carbon dioxide and water are formed.
a) Write a balanced formula equation for this reaction.
b) If butane is consumed at an average rate of $0.116 \mathrm{grams} / \mathrm{s}$, determine the rate of production of CO_{2} in g / s.

Answer \qquad
4. Given the reaction:

Suggest a method which could be used to monitor the rate of this reaction.

Why wouldn't total pressure be a good way to monitor the rate of this reaction?
5. Equal volumes of $\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}$ and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}{ }_{(\mathrm{aq})}$ are individually reacted with $0.10 \mathrm{M} \mathrm{MnO}_{4}^{-}(\mathrm{aq})$, and the following data were obtained:

Reactant	Concentration	Temperature	Time for complete reaction
Fe^{2+}	0.20 M	$25^{\circ} \mathrm{C}$	1.6 s
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	0.40 M	$35^{\circ} \mathrm{C}$	17.0 s

Explain in detail why these results are obtained.
6. The longer the time of reaction, the \qquad the rate of reaction.
7. On the following set of axes, draw the shape of the curve you would expect if you plotted the [HCl] vs. Time, starting immediately after the two reactants are mixed. The equation for the reaction is:

$$
\mathrm{Mg}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}_{2(g)}+\mathrm{MgCl}_{2(a q)}
$$

8. Give some examples of situations where we might want to increase the rate of a particular reaction.
\qquad
\qquad
\qquad
9. Give some examples of situations where we might want to decrease the rate of a particular reaction.
\qquad
\qquad
\qquad
10. Give two reasons why water is effective at putting out fires. Use concepts learned in this unit so far.
\qquad
11. The following table relates the time and the mass of Zn during the reaction between Zn and $0.5 \mathrm{M} \mathrm{HNO} 3:$

$$
\mathrm{Zn}_{(s)}+2 \mathrm{HNO}_{3(a q)} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2(a q)}
$$

Time	Mass of $\mathbf{Z n}(\mathrm{g})$
0.0 s	36.2 g
60.0 s	29.6 g
120.0 s	25.0 g
180.0 s	22.0 g

a) Calculate the reaction rate, in g / s, from time 0 to 60 s .
b) Calculate the reaction rate, in g / s, from time 120 s to 180 s .
c) Explain why the rate in calculation " b " is less than that of calculation "a".
12. Consider the rate of the following reaction:

$$
\mathrm{Fe}_{(s)}+2 \mathrm{HCl}_{(a q)} \quad \rightarrow \quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{FeCl}_{2(a q)}
$$

a) Is rate dependent on temperature? __. Explain your answer.
b) Is rate dependent on pressure? \qquad . Explain your answer.
\qquad
c) Is rate dependent on surface area? \qquad . Explain your answer.
13. Consider the rate of the following reaction:

$$
2 \mathrm{NaOCl}_{(a q)} \quad \rightarrow \quad 2 \mathrm{NaCl}_{(a q)}+\mathrm{O}_{2(g)}
$$

a) Is rate dependent on temperature? \qquad . Explain your answer.
\qquad
b) Is rate dependent on pressure? \qquad . Explain your answer.
c) Is rate dependent on surface area? \qquad . Explain your answer.
c) Is rate dependent on [NaOCl ? \qquad . Explain your answer.
14. Consider the following reaction:

$$
2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} O_{(\mathrm{g})}
$$

Data collected for the above reaction was used to construct the following graph:

From this graph, determine the rate of reaction in moles of NO consumed per second.

Chemistry 12
 Worksheet 1-1 - Measuring Reaction Rates

1. A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the reaction is:

$$
\mathrm{Zn}_{(s)}+2 \mathrm{HCl}_{(a q)} \quad \rightarrow \mathrm{H}_{2(g)}+\mathrm{ZnCl}_{2(a q)}
$$

A piece of zinc is dropped into 1.00 L of 0.100 M HCl and the following data were obtained:

$\|c\|$	Time
0 s	0.016 g
4 s	0.014 g
8 s	0.012 g
12 s	0.010 g
16 s	0.008 g
20 s	0.006 g

a) Calculate the Rate of Reaction in grams of Zn consumed per second.

$$
\frac{0.016-0.006}{20}=0.0005 \mathrm{~g} / \mathrm{s}
$$

b) Calculate the Rate of Reaction in moles of Zn consumed per second.
 $=0.0001529 \mathrm{~mol}$
c) Write out the complete ionic equation for the reaction.

d) What will happen to the $\left[\mathrm{H}^{+}\right]$as the reaction proceeds? Concentramon decreases
e) What will happen to the $[\mathrm{Cl}]$ as the reaction proceeds? \qquad
2. When magnesium is reacted with dilute hydrochloric acid (HCl), a reaction occurs in which hydrogen gas and magnesium chloride is formed.
a) Write a balanced formula equation for this reaction.

$$
m g(s)+2 \mathrm{HCl}_{\mathrm{L}}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(g)
$$

b) If the rate of consumption of magnesium is $5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$, find the rate of consumption of HCl in moles/s.

$$
2 \times 5.0<10^{-9} \text { models }
$$

$$
10 \times 10^{-9} \text { models } \quad \text { Answer } 1.0 \times 10^{-8} \text { moles }
$$

c) If the rate of consumption of magnesium is $5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$, find the rate of production of H_{2} in g / s.
$n\left(H_{2}\right)=n\left(m_{g}\right)$

- rate $\mathrm{H}_{2}=5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$

d) If the rate of consumption of magnesium is $5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$, find the rate of production of $\mathrm{H}_{2} \mathrm{in} \mathrm{L} / \mathrm{s}$ (@LC).

$$
\begin{aligned}
n=\frac{v}{24.8} \therefore V & =5.0 \times 10^{-9} \times 24.8 \\
& =1.24 \times 10^{-7} \mathrm{~L} \quad \text { Answer } 1.24 \times 10^{-7} \mathrm{~L} / \mathrm{s}
\end{aligned}
$$

e) If the rate of consumption of magnesium is $5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$, find the mass of Mg consumed in 5.0 minutes.
$\begin{aligned} & m(m g) \text { consumed }= 5.0 \times 10^{-9} \times 5 \times 60=1.5 \times 10^{-6} 9 \\ & \times 24.3\end{aligned}$

$$
\text { Answer } 3.6 \times 10^{-5} \mathrm{~g}
$$

3. When butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ is burned in air (oxygen), the products carbon dioxide and water are formed.
a) Write a balanced formula equation for this reaction.

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{l})+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}(9)+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

b) If butane is consumed at an average rate of $0.116 \mathrm{grams} / \mathrm{s}$, determine the rate of production of CO_{2} in g / s.

$$
\begin{aligned}
n=\frac{m}{M} \therefore n_{\text {butane }} & =\frac{0.116}{58} \\
& =0.002 \mathrm{~mol} \\
\therefore \operatorname{rate}(\text { butane }) & =0.002 \mathrm{~mol} / \mathrm{s} \\
\therefore \operatorname{rare}\left(\mathrm{co}_{2}\right) & =4 \times 0.002 \\
& =0.008 \mathrm{mel} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
n\left(\mathrm{CO}_{2}\right) & =\frac{m}{M} \\
\therefore m & =0.008 \times 44 \\
& =0.3529
\end{aligned}
$$

4. Given the reaction:

Worksheet 1-1 Measuring Reaction Rates

$$
\underset{\text { colourless }}{\mathrm{CO}_{2(\mathrm{~g})}}+\underset{\text { colourless }}{\mathrm{NO}_{(\mathrm{g})}} \rightarrow \underset{\text { colourless }}{\mathrm{CO}_{(\mathrm{g})}}+\underset{\text { brown }}{\mathrm{NO}_{2(\mathrm{~g})}}
$$

Suggest a method which could be used to monitor the rate of this reaction.

> Colour. Monitor the rate of change in colour as solution changes from colourless to brown.

Why wouldn't total pressure be a good way to monitor the rate of this reaction?
As amount of gas on each side of equation is the some.
5. Equal volumes of $\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}$ and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}{ }^{-}$(aq) are individually reacted with $0.10 \mathrm{M} \mathrm{MnO}_{4}^{-}(\mathrm{aq})$, and the following data were obtained:

Reactant	Concentration	Temperature	Time for complete reaction
Fe^{2+}	0.20 M	25°	1.6 S
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	0.40 M	$35^{\circ} \mathrm{C}$	

Explain in detail why these results are obtained.

6. The longer the time of reaction, the \qquad the rate of reaction.
7. On the following set of axes, draw the shape of the curve you would expect if you plotted the [HCl$] \mathrm{vs}$. Time, starting immediately after the two reactants are mixed. The equation for the reaction is:

$$
\mathrm{Mg}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}_{2(g)}+\mathrm{MgCl}_{2(a q)}
$$

Explain how you got that particular shape. Be detailed
The higher the concentration of HCl , the more frequently particles come into contact effective collisions \therefore the rate will be higher.
8. Give some examples of situations where we might want to increase the rate of a particular reaction.

```
    Production of chemsicals
```

9. Give some examples of situations where we might want to decrease the rate of a particular reaction.
\qquad
Rate at which fire burns
10. Give two reasons why water is effective at putting out fires. Use concepts learned in this unit so far.
water will decrease the temperature - rate decreases
water will remove O_{2} as a reactant. \therefore rate decreases
11. The following table relates the time and the mass of Zn during the reaction between Zn and $0.5 \mathrm{M} \mathrm{HNO}_{3}$:

$$
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2(a q)}
$$

Time	Mass of $\mathrm{Zn}(\mathrm{g})$
0.0 s	36.2 g
60.0 s	29.6 g
120.0 s	25.0 g
180.0 s	22.0 g

a) Calculate the reaction rate, in g / s, from time 0 to 60 s .
rate $\left.=\frac{\Delta \text { mass }}{\Delta \operatorname{time}}=\frac{36.2-29.6}{0-60.0}=0.11 \mathrm{~g} \right\rvert\, \mathrm{sec}$
b) Calculate the reaction rate, in g / s, from time 120 s to 180 s .

$$
\left.\frac{25.0-22.0}{180.0-120.0}=0.050 \mathrm{~g} \right\rvert\, \mathrm{sec}
$$

c) Explain why the rate in calculation "b" is less than that of calculation "a".

The $\left[\mathrm{HNO}_{3}\right]$ is decreasing \therefore fewer effective collisions \therefore rate of reaction is decreasing.
12. Consider the rate of the following reaction:

$$
\mathrm{Fe}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}_{2(g)}+\mathrm{FeCl}_{2(a q)}
$$

a) Is rate dependent on temperature? \qquad Yes Explain your answer.

$$
\text { T Temp } \uparrow \text { effective collisions } \uparrow \text { rate }
$$

b) Is rate dependent on pressure? \qquad . Explain your answer.
\qquad
c) Is rate dependent on surface area? \qquad Explain your answer.
$\uparrow s A \quad \uparrow$ contact \uparrow effective collisions \uparrow rate
13. Consider the rate of the following reaction:

$$
2 \mathrm{NaOCl}_{(a q)} \rightarrow 2 \mathrm{NaCl}_{(a q)}+O_{2(g)}
$$

a) Is rate dependent on temperature? \qquad Yes Explain your answer.

$$
\text { T Temp } \uparrow \text { contact Teffective collisions } \uparrow \text { rate }
$$

b) Is rate dependent on pressure? \qquad No . Explain your answer.
\qquad
There are no gaseous reactonts
c) Is rate dependent on surface area? \qquad Explain your answer.
\qquad
Reactant is a solution
c) Is rate dependent on $[\mathrm{NaOCl}$? Yes \uparrow contact Teffectuce collisions prate
14. Consider the following reaction:

$$
2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Data collected for the above reaction was used to construct the following graph:

From this graph, determine the rate of reaction in moles of NO consumed per second.

