<u>Chemistry 12</u> Worksheet 1-1 - Measuring Reaction Rates

1. A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the reaction is:

$$Zn_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + ZnCl_{2(aq)}$$

A piece of zinc is dropped into 1.00 L of 0.100 M HCl and the following data were obtained:

Time	Mass of Zinc
0 s	0.016 g
4 s	0.014 g
8 s	0.012 g
12 s	0.010 g
16 s	0.008 g
20 s	0.006 g

a) Calculate the *Rate of Reaction* in grams of Zn consumed per second.

b) Calculate the *Rate of Reaction* in moles of *Zn consumed per second*.

c) Write out the complete ionic equation for the reaction.

- d) What will happen to the [H⁺] as the reaction proceeds?
- e) What will happen to the [Cl] as the reaction proceeds?
- 2. When magnesium is reacted with dilute hydrochloric acid (HCl), a reaction occurs in which hydrogen gas and magnesium chloride is formed.
 - a) Write a *balanced formula equation* for this reaction.

.______

b) If the rate of consumption of magnesium is 5.0 x 10 ⁻⁹ mol/s, find the <i>rate of consumption of HCl</i> in moles/s.
Answer
c) If the rate of consumption of magnesium is 5.0×10^{-9} mol/s, find the <i>rate of production</i> of H_2 in g/s.
Answer
d) If the rate of consumption of magnesium is 5.0×10^{-9} mol/s, find the <i>rate of production</i> of H_2 in L/s (@SLC).
Answer
e) If the rate of consumption of magnesium is 5.0×10^{-9} mol/s, find the <i>mass of Mg</i> consumed in 5.0 minutes.
Answer
When butane (C_4H_{10}) is burned in air $(oxygen)$, the products $carbon\ dioxide$ and $water$ are formed.
a) Write a <i>balanced formula equation</i> for this reaction.
b) If butane is consumed at an average rate of 0.116 grams/s, determine the rate of production of CO ₂ in g/s.
Answer

4. Given the reaction:

3.

$$CO_{2(g)}$$
 + $NO_{(g)} \rightarrow CO_{(g)}$ + $NO_{2(g)}$ colourless colourless brown

Suggest a method which could be used to *monitor* the rate of this reaction.

Why wouldn't total pressure be a good way to monitor the rate of this reaction?

5. Equal volumes of $Fe^{2+}_{(aq)}$ and $C_2O_4{}^{2-}_{(aq)}$ are individually reacted with 0.10 M MnO₄- $_{(aq)}$, and the following data were obtained:

Reactant	Concentration	Temperature	e Time for complete reaction
Fe ²⁺	0.20 M	25°C	1.6 s
C ₂ O ₄ ² -	0.40 M	35°C	17.0 s

Explain in detail why these results are obtained.

6. The longer the *time of reaction*, the ______ the *rate of reaction*.

7. On the following set of axes, draw the shape of the curve you would expect if you plotted the *[HCl] vs. Time*, starting immediately after the two reactants are mixed. The equation for the reaction is:

Mg(s) + 2HCl(aq) \rightarrow $H_{2(g)}$ + $MgCl_{2(aq)}$

Explain how you got that particular shape. Be detailed.

Time

8. Give some examples of situations where we might want to *increase* the rate of a particular reaction.

9. Give some examples of situations where we might want to *decrease* the rate of a particular reaction.

10. Give *two* reasons why *water* is effective at putting out fires. Use concepts learned in this unit so far.

·____·

11. The following table relates the *time* and the *mass of Zn* during the reaction between Zn and $0.5M\ HNO_3$:

$$Zn_{(s)}$$
 + $2HNO_{3(aq)}$ \rightarrow $H_{2(g)}$ + $Zn(NO_{3})_{2(aq)}$

Time	Mass of Zn (g)
0.0 s	36.2 g
60.0 s	29.6 g
120.0 s	25.0 g
180.0 s	22.0 g

- a) Calculate the reaction rate, in g/s, from time 0 to 60 s.
- b) Calculate the reaction rate, in g/s, from time 120s to 180 s.
- c) Explain why the rate in calculation "b" is less than that of calculation "a".
- 12. Consider the *rate* of the following reaction:

$$Fe_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + FeCl_{2(aq)}$$

a) Is rate dependent on temperature? _____. Explain your answer.

b) Is rate dependent on *pressure*? ______. Explain your answer.

c) Is rate dependent on *surface area*? ______. Explain your answer.

13. Consider the *rate* of the following reaction:

$$2NaOCl_{(aq)} \rightarrow 2NaCl_{(aq)} + O_{2(g)}$$

a) Is rate dependent on *temperature*? ______. Explain your answer.

b) Is rate dependent on *pressure*? ______. Explain your answer.

c) Is rate dependent on *surface area*? ______. Explain your answer.

c) Is rate dependent on [NaOCl]? ______. Explain your answer.

14. Consider the following reaction:

$$2NO_{(g)} + 2H_{2(g)} \rightarrow N_{2(g)} + 2H_{2}O_{(g)}$$

Data collected for the above reaction was used to construct the following graph:

From this graph, determine the *rate of reaction* in *moles of NO consumed per second*.

Worksheet 1-1 - Measuring Reaction Rates

1. A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the reaction is:

$$Zn_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + ZnCl_{2(aq)}$$

A piece of zinc is dropped into 1.00 L of 0.100 M HCl and the following data were obtained:

Time	Mass of Zinc
0 s	0.016 g
4 s	0.014 g
8 s	0.012 g
12 s	0.010 g
16 s	0.008 g
20 s	0.006 g

a) Calculate the *Rate of Reaction* in grams of Zn consumed per second.

b) Calculate the *Rate of Reaction* in moles of Zn consumed per second.

$$n(2n) = \frac{m}{M} = \frac{0.01}{65.4}$$
 = 0.0001529 mol/s $\frac{0.001529}{Answer}$ $\frac{0.001529}{Answer}$ $\frac{0.001529}{Answer}$

c) Write out the complete ionic equation for the reaction.

- d) What will happen to the [H⁺] as the reaction proceeds? Concentration decreases
- e) What will happen to the [CI] as the reaction proceeds? Locentration increases
- 2. When magnesium is reacted with dilute hydrochloric acid (HCl), a reaction occurs in which hydrogen gas and magnesium chloride is formed.
 - a) Write a balanced formula equation for this reaction.

b) If the rate of consumption of magnesium is 5.0×10^{-9} mol/s, find the *rate of consumption of HCl* in moles/s.

c) If the rate of consumption of magnesium is 5.0×10^{-9} mol/s, find the *rate of production* of H_2 in g/s.

$$n(H_2) = n(Mg)$$

-: rate $H_2 = 5.0 \times 10^{-9}$ molls

d) If the rate of consumption of magnesium is 5.0 x 10^{-9} mol/s, find the *rate of production* of H_2 in L/s (@SLC).

e) If the rate of consumption of magnesium is 5.0×10^{-9} mol/s, find the *mass of Mg* consumed in 5.0 minutes.

consumed in 5.0 minutes.

$$m(mg)$$
 consumed = $5.0 \times 10^{-9} \times 5 \times 60 = 1.5 \times 10^{-6}$ 9
 $\times 24.3$

- 3. When butane (C_4H_{10}) is burned in air (oxygen), the products *carbon dioxide* and *water* are formed.
 - a) Write a balanced formula equation for this reaction.

b) If butane is consumed at an average rate of 0.116 grams/s, determine the rate of production of CO, in g/s.

$$n(co_2) = \frac{m}{M}$$

= 0.008×44
= 0.3529

- 4. Given the reaction:
- Worksheet 1-1 Measuring Reaction Rates

$$CO_{2(g)}$$
 + $NO_{(g)} \rightarrow CO_{(g)}$ + $NO_{2(g)}$ colourless brown

Suggest a method which could be used to monitor the rate of this reaction.

Why wouldn't total pressure be a good way to monitor the rate of this reaction?

5. Equal volumes of $\mbox{ Fe}^{2+}_{(aq)}$ and $\mbox{ C}_2\mbox{O}_4^{2-}_{(aq)}$ are individually reacted with 0.10 M MnO₄- $_{(aq)}$, and the following data were obtained:

Reactant	Concentration	Temperature	e Time for complete reaction
Fe ²⁺	0.20 M	25°C	1.6 s
C ₂ O ₄ ² -	0.40 M	35°C	17.0 s

The reaction involving Fe2+ has a lower activation energy barrier and therefore does not require on the high a temperature or concentration as Contentration as Contentration.

6.	The longer the time of reaction	the	slower	the rate	of	reaction

7. On the following set of axes, draw the shape of the curve you would expect if you plotted the *[HCl] vs. Time*, starting immediately after the two reactants are mixed. The equation for the reaction is:

8. Give some examples of situations where we might want to *increase* the rate of a particular reaction.

Production	of	chemicals	

9. Give some examples of situations where we might want to *decrease* the rate of a particular reaction.

Formation	of acro	1011
Rate at a	which Aire	burns

10. Give *two* reasons why *water* is effective at putting out fires. Use concepts learned in this unit so far.

water will remove of as a reactant is rate decreases

11. The following table relates the *time* and the *mass of Zn* during the reaction between Zn and 0.5M HNO₃:

$$Zn_{(s)}$$
 + $2HNO_{3(aq)}$ \rightarrow $H_{2(g)}$ + $Zn(NO_3)_{2(aq)}$

Time	Mass of Zn (g)	
0.0 s	36.2 g	
60.0 s	29.6 g	
120.0 s	25.0 g	
180.0 s	22.0 g	

a) Calculate the reaction rate, in g/s, from time 0 to 60 s.

b) Calculate the reaction rate, in g/s, from time 120s to 180 s.

c) Explain why the rate in calculation "b" is less than that of calculation "a".

12. Consider the *rate* of the following reaction:

$$Fe_{(s)} + 2HCl_{(aq)} \rightarrow H_{2(g)} + FeCl_{2(aq)}$$

a) Is rate dependent on temperature? ______. Explain your answer.

b) Is rate dependent on *pressure*? ______. Explain your answer.

c) Is rate dependent on *surface area*? ______. Explain your answer.

13. Consider the *rate* of the following reaction:

$$2NaOCl_{(aq)} \rightarrow 2NaCl_{(aq)} + O_{2(g)}$$

) Is rate dependent on temperature?	Yes	Explain your answer
-------------------------------------	-----	---------------------

14. Consider the following reaction:

$$2NO_{(g)}$$
 + $2H_{2(g)}$ \rightarrow $N_{2(g)}$ + $2H_2O_{(g)}$

Data collected for the above reaction was used to construct the following graph:

From this graph, determine the rate of reaction in moles of NO consumed per second.