CHEMICAL EQUILIBRIUM WORKSHEET

On t	he line at the left, write the letter of the descri	ptio	n that best matches each term.
	 Equilibrium position Law of chemical equilibrium 		used to determine if a reaction has reached equilibrium depends on the initial concentrations of the substances in a
	3. Reaction quotient	c.	, , ,
	4. Law of mass action	d.	a specific K_{eq} expresses the relative concentration of reactants and products a equilibrium in terms of an equilibrium constant
	5. Equilibrium constant	e.	
Ansv	ver each of the following in the space provided	1	-4
6. \	What is the equilibrium expression for the equ	atio	on $H_2(g) + I_2(g) <==> 2HI(g)$?
7. \	What is the equilibrium expression for the equ	atio	on $NH_4Cl(s) <==> NH_3(g) + HCl(g)$?
8. \	What is the equilibrium expression for the equ	atio	on $As_4O_6(s) + 6C(s) <==> As_4(g) + 6CO(g)$?
9. \	What is the equilibrium expression for the equ	atio	on $SnO_2(s) + 2CO(g) <==> Sn(s) + 2CO_2(g)$?
10. \	What is the equilibrium expression for the equ	atio	on $CaCO_3(s) <==> CaO(s) + CO_2(g)$?
ı	For the reaction 2CO(g) $<=>$ C(s) + CO ₂ (g), K _{ec} measured: [CO]=0.034 M, [CO ₂] =3.6x10 ⁻¹⁷ M. proceed?	1 = 7 Is t	7.7×10^{-15} . At a particular time, the following concentrations are this reaction at equilibrium? If not which direction will the reaction
			At a particular time, the following concentrations are measured: quilibrium? If not which direction will the reaction proceed?
ı			11. At a particular time, the following concentrations are s this reaction at equilibrium? If not which direction will the
	At 340 °C, $K_{eq} = 0.064$ for the reaction $Fe_2O_3(s)$ M, find Q and predict how the reaction will pro		$H_2(g) \le 2Fe(s) + 3H_2O(g)$ Given that $[H_2] = 0.45$ M and $[H_2O] = 0.37$ ed.
Mat	ch each statement with the appropriate letter.	Eac	ch letter can be used once, more than once, or not at all.
	15. The equilibrium concentration products is much greater than		a. K_{eq} is much greater than 1.
	reactants.		b. K _{eq} is about equal to 1.
	16. The equilibrium concentration products is much less than tha reactants		c. K _{eq} is much less than 1.
	17. There is a considerable amoun	t of	F
	both reactants and products a equilibrium	t	

Complete the following charts by writing left, right or none for equilibrium shift, and decreases, increases or remains the same for the concentrations of reactants and products and for the value of K.

 $N_2(g) + 3H_2(g) \le 2NH_3(g) + 22.0 \text{ kcal}$

Stress	Equilibrium Shift	[N ₂]	[H ₂]	[NH ₃]	К
18. Add N ₂	right		decreases	increases	Remains the same
19. Add H ₂					
20. Add NH ₃					
21. Remove N ₂					
22. Remove H ₂					
23. Remove NH ₃					
24. Increase Temperature					
25. Decrease Temperature					
26. Increase Pressure					
27. Decrease Pressure					

 $NaOH(s) \le Na^+(aq) + OH^-(aq) + 10.6 \text{ kcal (Remember that pure solids and liquids do not affect equilibrium values)}$

Stress	Equilibrium Shift	Amount NaOH(s)	[Na⁺]	[OH ⁻]	К
28. Add NaOH(s)					
29. Add NaCl (adds Na ⁺)					
30. Add KOH (Adds OH ⁻)					
31. Add H ⁺ (Removes OH ⁻)					
32. Increase Temperature					
33. Decrease Temperature					
34. Increase Pressure					
35. Decrease Pressure					

CHEMICAL EQUILIBRIUM WORKSHEET

On the line at the left, write the letter of the	description that best matches each term.
--	--

a
C

1. Equilibrium position

3. Reaction quotient

4. Law of mass action

5. Equilibrium constant

used to determine if a reaction has reached equilibrium

- depends on the initial concentrations of the substances in a
- states that every reaction proceeds to an equilibrium state with a specific K_{eq}
- expresses the relative concentration of reactants and products at equilibrium in terms of an equilibrium constant
- the ratio of product concentration to reactant concentration at equilibrium

Answer each of the following in the space provided

- What is the equilibrium expression for the equation $H_2(g) + I_2(g) <==> 2HI(g)?$ $K = \underbrace{[H1]^d}_{[H_2][I_2]}$
- What is the equilibrium expression for the equation $NH_4Cl(s) \iff NH_3(g) + HCl(g)$?

What is the equilibrium expression for the equation $As_4O_6(s) + 6C(s) <==> As_4(g) + 6CO(g)$?

9. What is the equilibrium expression for the equation $SnO_2(s) + 2CO(g) <==> Sn(s) + 2CO_2(g)$?

10. What is the equilibrium expression for the equation $CaCO_3(s) <==> CaO(s) + CO_2(g)$?

10. What is the equilibrium expression for the equation
$$CaCO_3(s) <==> CaO(s) + CO_2(g)$$

- 11. For the reaction $2CO(g) <==> C(s) + CO_2(g)$, $K_{eq} = 7.7 \times 10^{-15}$. At a particular time, the following concentrations are measured: [CO]=0.034 M, $[CO_2]=3.6\times 10^{-17}$ M. Is this reaction at equilibrium? If not which direction will the reaction proceed? D=[CO] /[CO] = 3,6×10-17/6034)= 3,11 ×10 ND, K< Q
- 12. For the reaction $N_2O_4(g) <==> 2NO_2(g)$, $K_{eq} = 0.2$. At a particular time, the following concentrations are measured: $[N_2O_4]=2.0$ M, $[NO_2]=0.2$ M. Is this reaction at equilibrium? If not which direction will the reaction proceed? $Q=[NO_3]^2/[N_2O_4]=(2)^2/2=2\times 10^{-2}$ ND, K>Q right
- 13. For the reaction $2|Cl(g)| <==> l_2(g) + Cl_2(g)$, $K_{eq} = 0.11$. At a particular time, the following concentrations are measured: [ICI]=2.5 M, $[I_2]=2.0 \text{ M}$, $[CI_2]=1.2 \text{ M}$. Is this reaction at equilibrium? If not which direction will the reaction proceed? $Q = [Cl_3][l_1]/[Icl]^2 = (1.2)(2.0)/(2.5)^2 = 0.384$ KLQ left
- 14. At 340 °C, $K_{eq} = 0.064$ for the reaction $Fe_2O_3(s) + 3H_2(g) <==> 2Fe(s) + 3H_2O(g)$ Given that $[H_2] = 0.45$ M and $[H_2O] = 0.37$ M, find Q and predict how the reaction will proceed. $Q = [HaOJ^3/[Ha]^3 = (.37)^3/(.45)^3 = 0.55$ KLQ (eft

Match each statement with the appropriate letter. Each letter can be used once, more than once, or not at all.

- 15. The equilibrium concentration of products is much greater than that of
- 16. The equilibrium concentration of products is much less than that of reactants
- 17. There is a considerable amount of both reactants and products at equilibrium
- a. K_{eq} is much greater than 1.
- b. K_{eq} is about equal to 1.
- c. K_{eq} is much less than 1.

Complete the following charts by writing left, right or none for equilibrium shift, and decreases, increases or remains the same for the concentrations of reactants and products and for the value of K.

 $N_2(g) + 3H_2(g) \le 2NH_3(g) + 22.0 \text{ kcal}$

Stress	Equilibrium Shift	[N ₂]	[H ₂]	[NH ₃]	К
18. Add N ₂	right	deerease	decreases	increases	Remains the same
19. Add H ₂	\rightarrow	decrease		Increase	II //
20. Add NH ₃	4	Increase	increase	way fast and safe same	N II
21. Remove N ₂	4		Increase	decrease	\\ //
22. Remove H ₂	2	1	one and two look look.	+	11 //
23. Remove NH ₃	<u> </u>	1	L	and that the top	y K
24. Increase Temperature	4	1	1	1	Change
25. Decrease Temperature		1	1	T	Change Change
26. Increase Pressure	Commence	1	1	1	no change
27. Decrease Pressure	4	1	1	+	no change

 $NaOH(s) \le Na^+(aq) + OH^-(aq) + 10.6 \text{ kcal (Remember that pure solids and liquids do not affect equilibrium values)}$

Stress	Equilibrium Shift	Amount NaOH(s)	[Na [†]]	[OH ⁻]	К
28. Add NaOH(s)	•		1	1	same
29. Add NaCl (adds Na ⁺)	4	1		1	Same
30. Add KOH (Adds OH ⁻)	_	1	¥		Same
31. Add H ⁺ (Removes OH ⁻)	·	1	1	THE ACT HE ARE THE SHE	Same
32. Increase Temperature	Lancara	7	1	J.	Change
33. Decrease Temperature		1	1	1	Change
34. Increase Pressure	no shift	**************************************	"Might aggression """	No of the second	White Section 1
35. Decrease Pressure	no shift		in the state of th	napricipinament entered.	or myselectures and the second

SCH4U

Chemical Systems and Equilibrium

ICE Practice Problems

#1 - Relatively easy, no ICE table required because eq'm concentrations are given

For the reaction $CH_{4(g)} + H_2O_{(g)} \leftrightarrow CO_{(g)} + 3H_2$ (g) @ 1500° C an equilibrium mixture of these gases was found to have the following concentrations [CO] = 0.300M, [H₂] = 0.800M and [CH₄] = 0.400M. K_c @ 1500° C = 5.67. Determine the equilibrium concentration of H₂O in this mixture.

#2 - Requires an ICE table because you do not know the equilibrium concentrations- no product is yet formed

For the reaction $CO_{(g)} + H_2O_{(g)} \leftrightarrow CO_{2(g)} + H_{2(g)}$ calculate the equilibrium concentrations of all species if 1.000 mol of each reactant is mixed in a 1.000L flask. Kc = 5.10 at the temperature of this reaction.

M	CO _(g) +	$H_2O_{(g)} \leftrightarrow$	CO _{2(g)} +	$H_{2(g)}$
[Initial] [Change in] [Equilibrium]	1.000	1.000	0	0

#3 - Requires an ICE table because you do not know the equilibrium concentrations. The initial concentrations must be calculated- no product is yet formed

For the reaction $H_{2(g)} + F_{2(g)} \leftrightarrow 2HF_{(g)}$ calculate the equilibrium concentrations of all species if 3.000 mol of each

A		$H_{2(g)}$	+	F ₂ (g)	\longleftrightarrow	$2HF_{(g)}$	K=LHFL
ritial]	1	2.00		2.00		0	THATER
hange in]	C	~ ×		-*		+ 2x	
quilibrium]	E.	2.00-x				and the same of th	
$a_{1},a_{2},a_{3},a_{4},a_{5},a_{6$		a.00-x		2.00-x		dy,	and a surple of the surple
115 - 12	x)		2 ×	21,45-10,72) v = 0 v =	1 100	[H2]=[1]=2.00-1.
1 3 - 7		10.72	Jan torcassassassassassas	distant 101:0	A COCK V.		= 0,31 HF]=2(1,69)=3,3

#4 - Requires an ICE table because you do not know the equilibrium concentrations. Initial concentrations of reactants are given.

0.200mol of H₂, 0.200mol of I₂, and 0.200mol of HI were placed in a 1.00 L flask and allowed to come to equilibrium. The K_c value of the reaction at this temperature is 49.5. Determine the equilibrium concentrations of all species.

all species.					3-(-%)
M	H _{2(g)} +	1 _{2(g)}	\longleftrightarrow	$2HI_{(g)}$	Commence of the second
[Initial]	. 200	. 200		. 200	
[Change in] C	one take	now of		+ ×	K>Q-
[Equilibrium] E	grander of the second s	from		manuscraphic and control of the section in	
	. 2 -x	, 2 - ×		.2+x	[Ha] = [12] = , 2-,15
V = {HI}	49,5 = (,2+x)		_ 8		= .05L
K THILL	S I The second of the second o	7.04=	· altx	.41-7.04x=	[HI] = 2(.15)
i Hallal	(.a-x)(,a-	×)	· J-X	1. 21 = 8,04x	1.301
				X = .15	Andrew Charles

#5 - Requires an ICE table because you do not know the equilibrium concentrations. Initial concentrations of reactants must be calculated and no product is yet formed

For the reaction $H_{Z(g)} + F_{Z(g)} \rightarrow 2HF_{(g)}$ calculate the equilibrium concentrations of each species if 3.000 mol of H_Z and 6.000mol of F_Z are mixed in a 3.000L flask. K_C at this temperature is 1.15 \times 10², K = 1 + 7 2 / $F_C = 1 + 7$

and 0.000moror	2 arc in	IVER III a 2.00	VL Hask.	ive ar may	remperature	2 T'T' Y TO.	K-IMP J	7101151
		H _{2(g)}	+	$F_{2(g)}$		Q HF(g)		16 27-157
[Initial]	- Owners	1.0		2.0		0		
[Change in]	C	mar Ha		~ 1/2		2x		
[Equilibrium]	F	1.D -x		Augusta parabasan da anticipa de la companya de la	*	- ACCOMPANION CONTRACTOR		
Emmodiana i romma u a zona e a a ?	N	1.0 - x		2.D-x		2x		