FINDING EQUATIONS OF CIRCULAR FUNCTIONS WORKSHEET 1

QUESTION 1

Write an equation for a trigonometric function with the specified characteristics.

	Function	Amplitude	Period	Reflection	Horizontal Translation	Vertical Translation	
(a)	Cosine	0.6	4π	In X axis	None	None	
(b)	Sine	5	$\frac{2\pi}{3}$	In Y axis	None	Up 2	
(c)	Cosine	15	4π	None	Left $\frac{\pi}{2}$	Down 10	
(d)	Sine	$\frac{2}{5}$	$\frac{\pi}{3}$	In both axes	Right $\frac{\pi}{3}$	None	

If the graph of the function shown below has the equation $y = a \sin bx + d$, find the values of a, b and d.

If the graph of the function shown below has the equation $y = a \sin bx + d$, find the values of a, b and d.

Find f(x) given that f(x) is in the form $a\cos(bx+c)+d$.

The equation describing the given graph is $y = a\cos(bx+c)+d$. Find a, b, c and d and hence state the equation.

The average monthly minimum temperatures for a small town are shown below.

Month (x)	1	2	3	4	5	6	7	8	9	10	11	12
Temperature °F	19	27	38	45	57	62	65	58	51	41	33	25

The function that models the average monthly minimum temperatures is of the form $f(x) = a \sin[b(x-d)] + c$ where a, b, c and d are constants, and x represents the month, where x = 1 represents January. Find the equation f(x).

A wheel with radius 20 cm has a centre 30 cm above the ground and is modelled by a cosine function. It rotates once every 15 seconds. Determine an equation for the height, h, above the ground of a point on the wheel at time t seconds if this point has a maximum at t = 2 seconds.

Solution

QUESTION 8

The pedals on a bicycle have a maximum height of 30 cm above the ground and minimum distance of 8 cm above the ground. A person pedals at a constant rate of 20 cycles per minute. Determine an equation for this cosine function, given that t is in seconds.

Tides are a periodic rise and fall of water in the ocean. A low tide of 4.2 metres in Vancouver occurs at 4:30am, The next high tide of 11.8 metres occurs at 11:30am on the same day. If the tide is modelled by a cosine function, find an equation to describe the tide given that t is in hours.

ANSWERS

QUESTION 1

(a) $y = -0.6\cos\left(\frac{\pi}{2}\right)$ (b) $y = 2 + 5\sin(-3x)$ (c) $y = 15 \cos \frac{\pi}{2} \left(x + \frac{\pi}{2} \right) - 10$ (d) $y = -\frac{2}{5}\sin 6\left(\frac{\pi}{3} - x\right)$ $y = \sin\left(\frac{x}{3}\right) + 2$ QUESTION 2 $y = -2\sin(\pi x)$ **QUESTION 3** $y = 3 - 2\cos(\pi x - 1)$ **QUESTION 4** $y = 3\tan\left(4x + \pi\right) + 1$ **QUESTION 5** $f(x) = 23\sin\left[\left(\frac{\pi}{6}(x-4)\right)\right] + 42$ **QUESTION 6** $h = 20\cos\frac{2\pi}{15}(t-2) + 30$ **QUESTION 7** $y = 11\cos\left(\frac{2\pi}{3}x\right) + 19$ or $y = -11\cos\left(\frac{2\pi}{3}x\right) + 19$ **QUESTION 8** $h(t) = -3.8\cos\frac{\pi}{7}(t - 4.5) + 8$ **QUESTION 9**