FINDING EQUATIONS OF CIRCULAR FUNCTIONS WORKSHEET 1

QUESTION 1

Write an equation for a trigonometric function with the specified characteristics.

	Function	Amplitude	Period	Reflection	Horizontal Translation	Vertical Translation
(a)	Cosine	0.6	4π	In X axis	None	None
(b)	Sine	5	$\frac{2 \pi}{3}$	In Y axis	None	Up 2
(c)	Cosine	15	4π	None	Left $\frac{\pi}{2}$	Down 10
(d)	Sine	$\frac{2}{5}$	$\frac{\pi}{3}$	In both axes	Right $\frac{\pi}{3}$	None

Solution

QUESTION 2

If the graph of the function shown below has the equation $y=a \sin b x+d$, find the values of a, b and d.

Solution

QUESTION 3

If the graph of the function shown below has the equation $y=a \sin b x+d$, find the values of a, b and d.

Solution

QUESTION 4

Find $f(x)$ given that $f(x)$ is in the form $a \cos (b x+c)+d$.

Solution

QUESTION 5

The equation describing the given graph is $y=a \cos (b x+c)+d$. Find a, b, c and d and hence state the equation.

Solution

QUESTION 6

The average monthly minimum temperatures for a small town are shown below.

Month (x)	1	2	3	4	5	6	7	8	9	10	11	12
Temperature ${ }^{\circ} \mathrm{F}$	19	27	38	45	57	62	65	58	51	41	33	25

The function that models the average monthly minimum temperatures is of the form $f(x)=a \sin [b(x-d)]+c$ where a, b, c and d are constants, and x represents the month, where $x=1$ represents January. Find the equation $f(x)$.

Solution

QUESTION 7

A wheel with radius 20 cm has a centre 30 cm above the ground and is modelled by a cosine function. It rotates once every 15 seconds. Determine an equation for the height, h, above the ground of a point on the wheel at time t seconds if this point has a maximum at $t=2$ seconds.

Solution

QUESTION 8

The pedals on a bicycle have a maximum height of 30 cm above the ground and minimum distance of 8 cm above the ground. A person pedals at a constant rate of 20 cycles per minute. Determine an equation for this cosine function, given that t is in seconds.

Solution

QUESTION 9

Tides are a periodic rise and fall of water in the ocean. A low tide of 4.2 metres in Vancouver occurs at 4:30am, The next high tide of 11.8 metres occurs at 11:30am on the same day. If the tide is modelled by a cosine function, find an equation to describe the tide given that t is in hours.

Solution

ANSWERS

QUESTION 1

(a) $y=-0.6 \cos \left(\frac{\pi}{2}\right)$
(b) $y=2+5 \sin (-3 x)$
(c) $y=15 \cos \frac{\pi}{2}\left(x+\frac{\pi}{2}\right)-10$
(d) $y=-\frac{2}{5} \sin 6\left(\frac{\pi}{3}-x\right)$

QUESTION 2

$$
y=\sin \left(\frac{x}{3}\right)+2
$$

QUESTION 3

$$
y=-2 \sin (\pi x)
$$

QUESTION 4

$$
y=3-2 \cos (\pi x-1)
$$

QUESTION 5

$$
y=3 \tan (4 x+\pi)+1
$$

QUESTION 6

$$
f(x)=23 \sin \left[\left(\frac{\pi}{6}(x-4)\right)\right]+42
$$

QUESTION 7

$$
h=20 \cos \frac{2 \pi}{15}(t-2)+30
$$

QUESTION 8

$$
y=11 \cos \left(\frac{2 \pi}{3} x\right)+19 \text { or } y=-11 \cos \left(\frac{2 \pi}{3} x\right)+19
$$

QUESTION 9

$$
h(t)=-3.8 \cos \frac{\pi}{7}(t-4.5)+8
$$

