MATH 121
 Functions-Functional Notation

1. (Section 1.2) If $g(x)=-2 x+7$, find and simplify completely:
a) $g(0)$
b) $g(1)$
c) $g(-2)$
d) $g(4)$
e) $g(a)$
f) $g(\odot)$
g) $g(x+h)$
2. (Section 1.2) If $f(x)=\frac{x^{2}-2}{x+2}$, find and simplify completely:
a) $f(1)$
b) $f(-1)$
c) $f(0)$
d) $f(-3)$
e) $f(a)$
f) $f($ () $)$
g) $f(x+h)$
3. (Section 1.2) Suppose f is the function given by $f(x)=-x^{2}+2 x-5$. Simplify each of the following completely.
a) $\frac{f(x+h)-f(x)}{a x}$
b) $\quad \frac{f(w)-f(1)}{1-w}$
c) $\quad \frac{f(-2)}{3}+\frac{f(6)}{2}$
d) $\frac{f\left(x^{2}\right)-f(2 x)}{x f(x)}$
e) $\frac{f(x+1)-f(x-1)}{2 x}$
4. (Section 1.2,2.2) Let g be the function given by $g(x)=\frac{2}{x}$. Find and simplify: $\frac{g(2+h)-g(2)}{h}$.
5. (Section 1.3, 1.4) For a linear function $f, f(2)=4$ and $f(-1)=3$.
a) Find the function.
b) \quad Find $f(3)$.
c) For what x is $f(x)=-100$?
6. (Section 1.3, 1.4) Suppose f is a linear function, and it is known that $f(-1)=2$ and $f(2)=-5$.
(a) Find $f(9)$.
(b) For what input x is $f(x)=\frac{35}{4}$?
7. (Section 1.3, 1.4) For a linear function $f, f(-1)=3$ and $f(2)=5$.
a) Find a formula for $f(x)$.
b) Write two other points for this function.
c) Determine the intercepts of the graph of f.
d) Determine the exact value of $f(7.5)$.
e) For what x is $f(x)=-10 \frac{3}{5}$?
8. (Section 2.2) Consider the functions $p(x)=-x^{2}$ and $q(x)=\sqrt{19-3 x}$
a) What is the domain of q ?
b) Simplify completely: $-4 \cdot p(-4)$
c) Simplify completely: $\sqrt{\frac{q(5)}{5-p(-2)}}$
d) Simplify completely: $[q(-2)-q(-10)]^{2}$
e) Simplify completely: $\frac{p(6)+6}{p(2)+2}$
f) Simplify completely: $\frac{p(x+h)-p(x)}{2 h}$
9. (Section 2.3) Suppose p is the function $p(x)=2 x+\frac{20}{x}-5$.
(a) For what input(s) x is $p(x)=8$?
(b) For what input(s) x is $p(x)=36$?
(c) Solve the following equation: $p(2 x)=p(x)$
10. (Section 2.3) Suppose f and g are the functions given by $f(x)=x-5$ and $g(x)=\frac{x-8}{x}$. Solve each of the following equations.
a) $\quad f(x)+g(x)=f(8)$
b) $\quad f(2 x+1)-f(3-x)=g(-6)$
c) $\quad g(-4) \cdot g(x+8)=g(-8) \cdot g(-x+8)$
11. (Section 3.5) Suppose f is the function $f(x)=3-\frac{1}{3} x$ and g is the function $g(x)=-x+4$. Solve for x in each of the following equations.
(a) $|f(x)+2|=\frac{g(-2)}{2}$
(b) $5-\frac{6|g(x)|}{5}=f(0)$
(c) $|f(2 x)|=|g(-x)|$
12. (Section 5.1) Let $f(x)=3+x+x^{3}$,
a. Find $f^{-1}(5)$
b. Graph f by plotting points.
c. Graph f^{-1}; comment on the relationship between the graph of f, f^{-1}, and $y=x$.
13. (Section 4.6) Let $f(x)=\frac{x-4}{2 x^{3}-x^{2}-8 x+4}$
a. Find all x such that $f(x)>0$.
b. Find all x such that $f(x)<-1$.
14. (Section 4.5) Let $f(x)=\frac{x^{2}}{x-1}+1$ and $g(x)=\frac{4 x-2}{x-2}+\frac{x+4}{2}$
a) Find the x-intercepts of the graph of f.
b) Find the x-intercepts of the graph of g.
c) Find the value(s) for x, if any exist, for which $f(x)=g(x)$.
15. (Section 4.6) Suppose f and g are functions such that $f(x)=\frac{x-5}{2}-\frac{3 x-1}{4}$ and $g(x)=\frac{1}{3}-\frac{3}{5} x$, solve each of the following:
a) $\quad f(0)>g(x)$
b) $\quad f(x) \leq g\left(\frac{-5}{3}\right)$
16. (Section 4.5) Let $f(x)=\frac{x}{x-2}$ and $g(x)=x^{2}+3$. Find and simplify completely:
a) $\frac{(g \circ f)(3)}{(f \circ g)(3)}$
b) $\frac{g(x+2)-g(x)}{x \cdot g(1)}$
17. (Section 5.1)
a) Let f be a function such that $f(2)=4$ and $f(8)=0$. If g is the inverse function of f, find and simplify: $\frac{(f \circ g)(4)}{g(0)}+(g \circ f)(1)$
b) Find the inverse of the function: $f(x)=\sqrt[3]{\frac{4+3 x}{x}}$
18. (Section 5.1) Suppose f and g are one - to - one functions such that $f(2)=7$, $f(4)=2$, and $g(2)=5$. Find the value, if possible, of
a) $\left(g \circ f^{-1}\right)(7)$
b) $\left(f \circ g^{-1}\right)(5)$
c) $\left(f^{-1} \circ g^{-1}\right)(5)$
d) $\left(g^{-1} \circ f^{-1}\right)(2)$
e) $\left(f \circ f^{-1}\right)(7)$
f) $\left(f^{-1} \circ f\right)(8)$
g) $(g \circ g)(2)$

Answer Keys:

1. (a) 7 (b) 5
(c) 11
(d) -1
(e) $-2 a+7$
(f) $-2 \odot+7$
(g) $-2(x+h)+7$
2. (a) $\frac{-1}{3}$
(b) -1
(c) -1
(d) -7
(e) $\frac{a^{2}-2}{a+2}$
(f) $\left(\odot^{2}-2\right) /(\odot+2)$
(g) $\frac{(x+h)^{2}-2}{(x+h)+2}$
3. (a) $\frac{-2 x h-h^{2}+2 h}{a x}$
(b) $w-1$
(c) 11
(d) $\frac{x^{3}-6 x+4}{x^{2}-2 x+5}$
(e) $\frac{-2 x+2}{x}$
4. $\frac{-1}{2+h}$
5. (a) $y=\frac{x}{3}+\frac{10}{3}$
(b) $\frac{13}{3}$
(c) -310
6. (a) $f(9)=12$
(b) $x=\frac{47}{4}$
7. (a) $f(x)=\frac{2}{3} x+\frac{11}{3}$
(b) $\left(0, \frac{11}{3}\right),\left(1, \frac{13}{3}\right)$
(c) $\left(0, \frac{11}{3}\right),\left(\frac{-11}{2}, 0\right)$
(d) $\frac{-196}{10}$
8. (a) $\left(-\infty, \frac{19}{3}\right]$
(b) 64
(c) $\frac{2}{3}$
(d) 4
(e) 15
(f) $\frac{-2 x-h}{2}$
9. (a) $x=\frac{5}{2}, 4$
(b) $x=\frac{1}{2}, 20$
(c) $x= \pm \sqrt{5}$
10. (a) $x=8,-1$
(b) $x=\frac{43}{9}$
(c) $x=0,40$
11. (a) $x=6,24$
(b) $x=\frac{7}{3}$
(c) $x=-21$
12. (a) $x=1$
(b)

13. (a) $(-\infty,-2) \cup\left(\frac{1}{2}, 2\right) \cup(4, \infty)$
(b) $\left(2, \frac{1+\sqrt{56}}{4}\right)$
14. (a) $\frac{-1 \pm \sqrt{5}}{2}$
(b) $-5 \pm \sqrt{13}$
15. (a) $\frac{155}{36}<x$
(b) $x \geq \frac{-43}{3}$
16. (a) 10
(b) $\frac{x+1}{x}$
17. (a) $\frac{3}{2}$
(b) $y=\frac{4}{x^{3}-3}$
18. (a) 5
(b) 7
(c) 4
(d) not possible
(e) 7
(f) 8
(g) not possible.
