Potential Energy Diagrams Practice

(c) (c) (a) Reaction coordinate $(X + Y \rightarrow Z)$ **1.** Which letter (a–f) represents potential energy (Δ H) of the products?

- **2.** Which letter (a-f) represents potential energy (ΔH) of the activated complex?
- **3.** Which letter (a-f) represents potential energy (ΔH) of the reactants?

4. Which letter (a-f) represents activation energy (E_a) of the forward reaction (reactants)?

5. Which letter (a-f) represents heat of reaction (ΔH_{Rxn}) of the forward reaction?

- 6. Is the forward reaction endothermic or exothermic?
- **7.** Which letter (a-f) represents activation energy (E_a) of the reverse reaction (products)?
- **8.** Which letter (a-f) represents heat of reaction (ΔH_{Rxn}) of the reverse reaction?
- 9. Is the reverse reaction endothermic or exothermic?

Time

10. The potential energy (Δ H) of the reactants in the forward reaction is about ______ kilojoules (kJ).

11. The potential energy (Δ H) of the products in the forward reaction is about ______kilojoules (kJ).

12. The potential energy (Δ H) of the activated complex in the forward reaction is about ______ kilojoules (kJ).

13. The activation energy (E_a) of the forward reaction (reactants) is about ______ kilojoules (kJ).

15. The potential energy (Δ H) of the reactants in the reverse reaction is about ______ kilojoules (kJ).

16. The potential energy (Δ H) of the products in the reverse reaction is about ______ kilojoules (kJ).

17. The potential energy (ΔH) of the activated complex in the reverse reaction is about ______kilojoules (kJ).

18. The activation energy (E_a) of the reverse reaction (products) is about ______ kilojoules (kJ).

19. The reverse reaction is ______(endothermic or exothermic).

Name:

PART C - REACTION RATES (KINETICS)

Place an "X" next to each action that would most likely INCREASE the reaction rate.

- 1. _____ Lowering the temperature of the reactants.
- 2. ____ Dissolving two solids in water before mixing them together.
- 3. _____ Diluting an aqueous solution of HCI with water before adding a piece of magnesium.
- 4. _____ Grinding a solid into fine particles.
- 5. _____ Adding an enzyme catalyst.

PART D – CREATING A POTENTIAL ENERGY DIAGRAM

NOTE: For each example, Activation Energy (E_{α}) is for the <u>forward</u> reaction, and will always drop down to the reactants. **NOTE:** For each reaction, ΔH is the enthalpy of the reaction (ΔH_{Rxn}) of the <u>forward</u> reaction.

For the following graphs, draw arrows and calculate the values of ΔH and E_a .

On the following graphs draw a reaction coordinate for a reaction that fits the given descriptions

Potential Energy Diagrams Practice

(b)

Potential energy

×

(a)

(d)

(c)

Z

(f)

(e)

Reaction coordinate (X + Y ---- Z)

1. Which letter (a–f) represents potential energy (Δ H) of the products?

- 2. Which letter (a-f) represents potential energy (ΔH) of the activated complex?
- Which letter (a-f) represents potential energy (ΔH) of the reactants?

4. Which letter (a-f) represents activation energy (E_a) of the forward reaction (reactants)?

5. Which letter (a-f) represents heat of reaction (ΔH_{Rxn}) of the forward reaction?

6. Is the forward reaction endothermic or exothermic?

7. Which letter (a-f) represents activation energy (E_a) of the reverse reaction (products)?

8. Which letter (a-f) represents heat of reaction (ΔH_{Rxn}) of the reverse reaction?

9. Is the reverse reaction endothermic or exothermic?

Time

10. The potential energy (Δ H) of the reactants in the forward reaction is about ________ \$ kilojoules (kJ).

12. The potential energy (Δ H) of the activated complex in the forward reaction is about <u>**24**0</u> kilojoules (kJ).

13. The activation energy (E_a) of the forward reaction (reactants) is about _________ kilojoules (kJ).

14. The forward reaction is ______ **Endethermic** (endothermic or exothermic).

15. The potential energy (Δ H) of the reactants in the reverse reaction is about ______ **60**_____ kilojoules (kJ).

16. The potential energy (Δ H) of the products in the reverse reaction is about ______ **20** kilojoules (kJ).

18. The activation energy (E_a) of the reverse reaction (products) is about ______ **\begin{array}{c} & \\ & \\ & \\ & \\ & \end{array} kilojoules (kJ).**

19. The reverse reaction is **Ecothermic** (endothermic or exothermic).

PART C - REACTION RATES (KINETICS)

Place an "X" next to each action that would most likely INCREASE the reaction rate.

- 1. _____ Lowering the temperature of the reactants.
- 2. ____ Dissolving two solids in water before mixing them together.
- 3. _____ Diluting an aqueous solution of HCI with water before adding a piece of magnesium.
- 4. Key Grinding a solid into fine particles.
- 5. X Adding an enzyme catalyst.

PART D - CREATING A POTENTIAL ENERGY DIAGRAM

NOTE: For each example, Activation Energy (E_a) is for the <u>forward</u> reaction, and will always drop down to the reactants. **NOTE:** For each reaction, ΔH is the enthalpy of the reaction (ΔH_{Rxn}) of the <u>forward</u> reaction.

For the following graphs, draw arrows and calculate the values of ΔH and Ea.

On the following graphs draw a reaction coordinate for a reaction that fits the given descriptions

