STRUCTURAL ISOMERS - TOPIC TEST 1

QUESTION 1

Structural isomers may come from different families of organic compound. True or false?

Solution

QUESTION 2

Which of the following compounds has the greatest number of isomers?

- A Ethane
- B Propane
- C Butane
- D Hexane

QUESTION 3

Identify each pair of formulas as structural isomers or the same molecule.

(a)

$$\begin{array}{cccc} CH_3 & CH_3 \\ \mid & \mid \\ CH_2-CH_2 & \text{and} & CH_2-CH_2-CH_3 \\ & \mid & \\ & CH_3 \end{array}$$

(b)

QUESTION 4

Which compounds are structural isomers?

- Α 1-propanol and 2-propanol
- methanoic acid and ethanoic acid В
- С methanol and methanal
- ethane and ethanol

QUESTION 5

Which of the following hydrocarbons does not have isomers?

- Α C₆H₁₄
- B C₅H₁₀
- C_4H_8 С
- C_3H_8

QUESTION 6

Which of the following hydrocarbons is a structural isomer of 2-methylpent-2ene? (One or more answers).

QUESTION 7

Give the structural formulae of the isomers of the compound with molecular formula C_3H_6O .

Solution

QUESTION 8

Choose the structural isomers that have the formula $\,C_{\scriptscriptstyle 4}H_{\scriptscriptstyle 8}BrCl$.

Solution

SOLUTIONS

QUESTION 1 True

QUESTION 2 Answer is D

QUESTION 3

- (a) When we add up the number of C atoms and H atoms, they give the same molecular formula C_4H_{10} . The condensed structural formula on the left has a chain of four C atoms. Even though the — CH_3 ends are drawn up, they are part of the four-carbon chain. The condensed structural formula on the right also has a four-carbon chain even though one — CH_3 end is drawn down. Thus both condensed structural formulas represent the same molecule and are **not structural isomers**.
- (b) Structural isomers
- (c) When we add up the number of C atoms and H atoms, they give the same molecular formula C₆H₁₄. The line-angle structural formula on the left has a five-carbon chain with a —CH₃ substituent on the second carbon of the chain. The line-angle structural formula on the right has a four-carbon chain with two —CH₃ substituents, one bonded to the second carbon and one bonded to the third carbon. Therefore, there is a different order of bonding of atoms, which represents **structural isomers**.

QUESTION 4 Answer is A

QUESTION 5 Answer is D

QUESTION 6 Answer is A and D

The molecular formula of 2-methylpent-2ene is C_6H_{12} . The answer is therefore the structure with 5 carbon atoms, 12 hydrogen atoms and a double bond between two carbon atoms.

QUESTION 7

QUESTION 8

Structures I, IV and VI are structural isomers of C_4H_8BrCl .