AMINO ACIDS AND PH - TOPIC TEST 1

QUESTION 1

The most likely structure of glycine in a low pH solution would be:

- A. NH₃+CH₂COO⁻
- B. NH₂CH₂COO⁻
- C. NH₃+CH₂COOH
- D. NH₂CH₂COOH

QUESTION 2

For serine, which exists as a zwitterion at pH 6, the correct formula at a pH of 6 would be:

- A. $H_2NCH(C_2H_5)COOH$
- B. H₃NCH(C₂H₅)COOH
- C. $H_2NCH(C_2H_5)COO^{-1}$
- D. $H_3 N^+CH(C_2H_5)COO^-$

QUESTION 3

At low pH, amino acids

- A $accept H^+$ to reform the carboxyl group
- B accept H^+ at the amino functional group
- C donate H^+ from the carboxyl group
- D donate H^+ from the amino group

QUESTION 4

In acidic conditions, amino acids will

- A migrate towards the negative electrode during electrophoresis
- B migrate towards the positive electrode during electrophoresis
- C not migrate during electrophoresis
- D exist in the zwitterion form

QUESTION 5

When an amino acid is in basic conditions,

- A the carboxyl group will exist as COOH and the amino group will exist as NH_A^+
- B the carboxyl group will exist as COO^- and the amino group will exist as NH_2
- C the carboxyl group will exist as *COOH* and the amino group will exist as *NH*,
- D the carboxyl group will exist as COO^- and the amino group will exist as NH_4^+

QUESTION 6

The charge on a glutamic acid molecule in alkaline conditions would be

- A 0
- B -1
- C -2
- D -3

SOLUTIONS

QUESTION 1	Answer is C
QUESTION 2	Answer is D
QUESTION 3	Answer is A
QUESTION 4	Answer is A
QUESTION 5	Answer is B

QUESTION 6 Answer is C