## Appendix A

## First Principles

The graph below shows how a function $f(x)$ might change between $x=a$ and $x=b$.


The gradient of the chord from $(a, f(a))$ to $(b, f(b)$ is

$$
\frac{\Delta y}{\Delta x}=\frac{\text { change in } y}{\text { change in } x}=\frac{f(b)-f(a)}{b-a} .
$$

As the width of the interval $[a, b]$ decreases, the approximation

$$
\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a} .
$$

becomes closer to the gradient of the tangent line to the graph of $f(x)$ at $x=a$, and so to the derivative of $f(x)$ at $x=a$.
If we put $b=a+h$, then the derivative of $f(x)$ at $x=a$ is given by the limit

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{(a+h)-a}
$$

## Definition

The derivative of $y=f(x)$ at the point $(a, f(a))$ is given by the limit

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

## Example

first principles at $x=a$

Find the derivative of $y=x^{2}$ at $x=a$ using first principles

1. From the definition ...

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{(a+h)^{2}-a^{2}}{h}
$$

2. Expanding, then simplifying and taking the limit ...

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{\left(a^{2}+2 a h+h^{2}\right)-a^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 a h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 2 a+h \\
& =2 a
\end{aligned}
$$

The derivative at $x=a$ is $\frac{d y}{d x}=2 a$

## Example

first principles without using $x=a$

Differentiate $y=x^{2}+4 x+2$ using first principles

1. From the definition ...

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}+4(x+h)+2\right]-\left[x^{2}+4 x+2\right]}{h}
$$

2. Expanding, then simplifying and taking the limit ...

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{\left[x^{2}+(2 h+4) x+\left(h^{2}+4 h+2\right)\right]-\left[x^{2}+4 x+2\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+\left(h^{2}+4 h\right)}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h+4 \\
& =2 x+4
\end{aligned}
$$

The derivative is $\frac{d y}{d x}=2 x+4$

## Example

cubic function

Differentiate $y=x^{3}$ using first principles

1. From the definition ...

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}
$$

2. Expanding, then simplifying and taking the limit ...

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \\
& =\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2} \\
& =3 x^{2}
\end{aligned}
$$

The derivative is $\frac{d y}{d x}=3 x^{2}$

## Example

rational function

Differentiate $f(x)=\frac{x+1}{x+2}$ using first principles

1. From the definition ...

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{(x+h)+1}{(x+h)+2}-\frac{x+1}{x+2}}{h}
$$

2. Expanding, then simplifying and taking the limit ...

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h+1)(x+2)-(x+1)(x+h+2)}{(x+h+2)(x+2) h} \\
& =\lim _{h \rightarrow 0} \frac{1}{(x+h+2)(x+2)} \\
& =\frac{1}{(x+2)(x+2)} \\
& =\frac{1}{(x+2)^{2}}
\end{aligned}
$$

The derivative is $f^{\prime}(x)=\frac{1}{(x+2)^{2}}$.

