Line gradients, $y=m x+c$, parallel and perpendicular lines.

The gradient of a line tells us how much it goes up for every 1 unit you move across.

- Positive gradient is a slope
- A horizontal line (e.g. $y=2$) \rightarrow has zero gradient.
- Negative gradient is a slope \searrow
- A vertical line (e.g. $x=1$) \uparrow has infinite gradient.

The equation $y=m x+c$ has a number m which is the gradient and a number \mathbf{c} which is the " y-intercept", the y-value corresponding to the $x=0$ point where the line cuts the y axis.

The gradient is calculated as $m=\frac{\text { up }}{\text { across }}$

The arrows must be drawn "nose to tail".

If the line slopes downwards, either the "across" or the "up" value will be negative, so the gradient is negative:

Parallel lines all have the same gradient, for instance these lines are parallel because they all have gradient $=2$

Pairs of perpendicular lines have gradients that multiply to make -1, for instance:

- $y=x, \quad y=-x \quad(1 \times(-1)=-1)$
- $y=2 x, \quad y=-\frac{1}{2} x$
($2 \times\left(-\frac{1}{2}\right)=-1$)
- $y=-10 x+3, y=0.1 x+4$
$(-10 \times-0.1=-1)$.

Why?

The y-intercept values $+3,+4$ do not matter - they just slide the line up and down without changing its gradient.

When we rotate a line through 90°,

- the triangle rotates too
- the "across" and "up" values get swapped and one becomes negative

If the gradient of one line is m_{1}, the gradient of the perpendicular is

$$
m_{2}=-\frac{1}{m_{1}}
$$

- e.g. If the first gradient $=10$, the second must be $-\frac{1}{10}$.
- If the first gradient $=-3$, the second must be $\frac{1}{3}$.
- If the first gradient $=\frac{2}{3}$, the second must be $-\frac{3}{2}$ (its reciprocal, with the sign changed).

In general, you always have:

- one positive, one negative gradient
- one steep, one shallow gradient.

