Difference of Squares and Perfect Square Trinomials

4.4 OBJECTIVES

1. Factor a binomial that is the difference of two squares
2. Factor a perfect square trinomial

In Section 3.5, we introduced some special products. Recall the following formula for the product of a sum and difference of two terms:

$$
\begin{equation*}
(a+b)(a-b)=a^{2}-b^{2} \tag{1}
\end{equation*}
$$

This also means that a binomial of the form $a^{2}-b^{2}$, called a difference of two squares, has as its factors $a+b$ and $a-b$.

To use this idea for factoring, we can write

$$
\begin{equation*}
a^{2}-b^{2}=(a+b)(a-b) \tag{2}
\end{equation*}
$$

A perfect square term has a coefficient that is a square ($1,4,9,16,25,36$, etc.), and any variables have exponents that are multiples of $2\left(x^{2}, y^{4}, z^{6}\right.$, etc.).

Example 1

Identifying Perfect Square Terms
For each of the following, decide whether it is a perfect square term. If it is, find the expression that was squared (called the root).
(a) $36 x$
(b) $24 x^{6}$
(c) $9 x^{4}$
(d) $64 x^{6}$
(e) $16 x^{9}$

Only parts c and d are perfect square terms.
$9 x^{4}=\left(3 x^{2}\right)^{2}$
$64 x^{6}=\left(8 x^{3}\right)^{2}$

CHECK YOURSELF 1

For each of the following, decide whether it is a perfect square term. If it is, find the expression that was squared.
(a) $36 x^{12}$
(b) $4 x^{6}$
(c) $9 x^{7}$
(d) $25 x^{8}$
(e) $16 x^{25}$

We will now use equation 2 above to factor the difference between two perfect square terms.

NOTE You could also write $(x-4)(x+4)$. The order doesn't matter because multiplication is commutative.

Example 2

Factoring the Difference of Two Squares
Factor $x^{2}-16$.
\uparrow Think $x^{2}-4^{2}$
Because $x^{2}-16$ is a difference of squares, we have
$x^{2}-16=(x+4)(x-4)$

CHECK YOURSELF 2

Factor $m^{2}-49$.

Any time an expression is a difference of two squares, it can be factored.

Example 3

Factoring the Difference of Two Squares
Factor $4 a^{2}-9$.

Think $(2 a)^{2}-3^{2}$
So
$4 a^{2}-9=(2 a)^{2}-(3)^{2}$

$$
=(2 a+3)(2 a-3)
$$

CHECK YOURSELF 3

Factor $9 b^{2}-25$.

The process for factoring a difference of squares does not change when more than one variable is involved.

Example 4

Factoring the Difference of Two Squares
Factor $25 a^{2}-16 b^{4}$.
$25 a^{2}-16 b^{4}=\left(5 a+4 b^{2}\right)\left(5 a-4 b^{2}\right)$

CHECK YOURSELF 4
Factor $49 c^{4}-9 d^{2}$.

We will now consider an example that combines common-term factoring with difference-of-squares factoring. Note that the common factor is always removed as the first step.

NOTE Step 1
Remove the GCF.
Step 2
Factor the remaining binomial.

Example 5

Removing the GCF First

Factor $32 x^{2} y-18 y^{3}$.
Note that $2 y$ is a common factor, so
$32 x^{2} y-18 y^{3}=2 y\left(16 x^{2}-9 y^{2}\right)$

$$
\begin{aligned}
& \text { Difference of squares } \\
& =2 y(4 x+3 y)(4 x-3 y)
\end{aligned}
$$

CHECK YOURSELF 5

Factor $50 a^{3}-8 a b^{2}$.

Recall the following multiplication pattern.

CAUTION

Note that this is different from the sum of two squares (like $x^{2}+y^{2}$), which never has integer factors.
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
For example,
$(x+2)^{2}=x^{2}+4 x+4$
$(x+5)^{2}=x^{2}+10 x+25$
$(2 x+1)^{2}=4 x^{2}+4 x+1$
Recognizing this pattern can simplify the process of factoring perfect square trinomials.

Example 6

Factoring a Perfect Square Trinomial

Factor the trinomial $4 x^{2}+12 x y+9 y^{2}$.
Note that this is a perfect square trinomial in which
$a=2 x$ and $b=3 y$.
In factored form, we have
$4 x^{2}+12 x y+9 y^{2}=(2 x+3 y)^{2}$

CHECK YOURSELF 6

Factor the trinomial $16 u^{2}+24 u v+9 v^{2}$.

Recognizing the same pattern can simplify the process of factoring perfect square trinomials in which the second term is negative.

Example 7

Factoring a Perfect Square Trinomial
Factor the trinomial $25 x^{2}-10 x y+y^{2}$.
This is also a perfect square trinomial, in which
$a=5 x$ and $b=-y$.

In factored form, we have
$25 x^{2}-10 x y+y^{2}=(5 x+(-y))^{2}=(5 x-y)^{2}$

CHECK YOURSELF Z

Factor the trinomial $4 u^{2}-12 u v+9 v^{2}$.

CHECK YOURSELF ANSWERS

1. (a) $\left(6 x^{6}\right)^{2}$; (b) $\left(2 x^{3}\right)^{2}$; (d) $\left(5 x^{4}\right)^{2}$
2. $(m+7)(m-7)$
3. $(3 b+5)(3 b-5)$
4. $\left(7 c^{2}+3 d\right)\left(7 c^{2}-3 d\right)$
5. $2 a(5 a+2 b)(5 a-2 b)$
6. $(4 u+3 v)^{2}$
7. $(2 u-3 v)^{2}$

Section \qquad Date \qquad
For each of the following binomials, state whether the binomial is a difference of squares.

1. $3 x^{2}+2 y^{2}$
2. $5 x^{2}-7 y^{2}$
3. $16 a^{2}-25 b^{2}$
4. $9 n^{2}-16 m^{2}$
5. $16 r^{2}+4$
6. $p^{2}-45$
7. $16 a^{2}-12 b^{3}$
8. $9 a^{2} b^{2}-16 c^{2} d^{2}$
9. $a^{2} b^{2}-25$
10. $4 a^{3}-b^{3}$

Factor the following binomials.
11. $m^{2}-n^{2}$
12. $r^{2}-9$
13. $x^{2}-49$
14. $c^{2}-d^{2}$
15. $49-y^{2}$
16. $81-b^{2}$
17. $9 b^{2}-16$
18. $36-x^{2}$
19. $16 w^{2}-49$
20. $4 x^{2}-25$
21. $4 s^{2}-9 r^{2}$
22. $64 y^{2}-x^{2}$
23. $9 w^{2}-49 z^{2}$
24. $25 x^{2}-81 y^{2}$

ANSWERS

1.

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

ANSWERS

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53. $16 a^{2}-49 b^{2}$
54. $64 m^{2}-9 n^{2}$
55. $x^{4}-36$
56. $y^{6}-49$
57. $x^{2} y^{2}-16$
58. $m^{2} n^{2}-64$
59. $25-a^{2} b^{2}$
60. $49-w^{2} z^{2}$
61. $r^{4}-4 s^{2}$
62. $p^{2}-9 q^{4}$
63. $81 a^{2}-100 b^{6}$
64. $64 x^{4}-25 y^{4}$
65. $18 x^{3}-2 x y^{2}$
66. $50 a^{2} b-2 b^{3}$
67. $12 m^{3} n-75 m n^{3}$
68. $63 p^{4}-7 p^{2} q^{2}$
69. $48 a^{2} b^{2}-27 b^{4}$
70. $20 w^{5}-45 w^{3} z^{4}$

Determine whether each of the following trinomials is a perfect square. If it is, factor the trinomial.
43. $x^{2}-14 x+49$
44. $x^{2}+9 x+16$
45. $x^{2}-18 x-81$
46. $x^{2}+10 x+25$
47. $x^{2}-18 x+81$
48. $x^{2}-24 x+48$

Factor the following trinomials.
49. $x^{2}+4 x+4$
50. $x^{2}+6 x+9$
51. $x^{2}-10 x+25$
52. $x^{2}-8 x+16$

ANSWERS

53. $4 x^{2}+12 x y+9 y^{2}$
54. $9 x^{2}-24 x y+16 y^{2}$
55. $9 w^{2}-30 w v+25 v^{2}$
56. $y^{3}-10 y^{2}+25 y$
57. $12 b^{3}-12 b^{2}+3 b$

Factor each expression.

59. $x^{2}(x+y)-y^{2}(x+y)$
60. $a^{2}(b-c)-16 b^{2}(b-c)$
61. $2 m^{2}(m-2 n)-18 n^{2}(m-2 n)$
62. $3 a^{3}(2 a+b)-27 a b^{2}(2 a+b)$
63. Find a value for k so that $k x^{2}-25$ will have the factors $2 x+5$ and $2 x-5$.
64. Find a value for k so that $9 m^{2}-k n^{2}$ will have the factors $3 m+7 n$ and $3 m-7 n$.
65. Find a value for k so that $2 x^{3}-k x y^{2}$ will have the factors $2 x, x-3 y$, and $x+3 y$.
66. Find a value for k so that $20 a^{3} b-k a b^{3}$ will have the factors $5 a b, 2 a-3 b$, and $2 a+3 b$.
67. Complete the following statement in complete sentences: "To factor a number you...."

68. Complete this statement: To factor an algebraic expression into prime factors means
 Getting Ready for Section 4.5 [Section 4.1]

Factor.
(a) $2 x(3 x+2)-5(3 x+2)$
(b) $3 y(y-4)+5(y-4)$
(c) $3 x(x+2 y)+y(x+2 y)$
(d) $5 x(2 x-y)-3(2 x-y)$
(e) $4 x(2 x-5 y)-3 y(2 x-5 y)$
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
a.
b.
c.
d.
e.

Answers

1. No 3. Yes
2. No 7. No
3. Yes
4. $(m+n)(m-n)$
5. $(x+7)(x-7)$
6. $(7+y)(7-y)$
7. $(3 b+4)(3 b-4)$
8. $(4 w+7)(4 w-7)$
9. $(2 s+3 r)(2 s-3 r)$
10. $(3 w+7 z)(3 w-7 z)$
11. $(4 a+7 b)(4 a-7 b)$
12. $\left(x^{2}+6\right)\left(x^{2}-6\right)$
13. $(x y+4)(x y-4)$
14. $(5+a b)(5-a b)$
15. $\left(r^{2}+2 s\right)\left(r^{2}-2 s\right)$
16. $\left(9 a+10 b^{3}\right)\left(9 a-10 b^{3}\right)$
17. $2 x(3 x+y)(3 x-y)$
18. $3 m n(2 m+5 n)(2 m-5 n)$
19. $3 b^{2}(4 a+3 b)(4 a-3 b)$
20. Yes; $(x-7)^{2}$
21. No
22. Yes; $(x-9)^{2}$
23. $(x+2)^{2}$
24. $(x-5)^{2}$
25. $(2 x+3 y)^{2}$
26. $(3 x-4 y)^{2}$
27. $y(y-5)^{2}$
28. $(x+y)^{2}(x-y)$
29. $2(m-2 n)(m+3 n)(m-3 n)$
30. 4
31. 18
32.

a. $(3 x+2)(2 x-5)$
b. $(y-4)(3 y+5)$
c. $(x+2 y)(3 x+y)$
d. $(2 x-y)(5 x-3)$
e. $(2 x-5 y)(4 x-3 y)$

