Difference of Squares and Perfect Square Trinomials

4 OBJECTIVES

- 1. Factor a binomial that is the difference of two squares
- 2. Factor a perfect square trinomial

In Section 3.5, we introduced some special products. Recall the following formula for the product of a sum and difference of two terms:

$$(a+b)(a-b) = a^2 - b^2$$
(1)

This also means that a binomial of the form $a^2 - b^2$, called a **difference of two squares**, has as its factors a + b and a - b.

To use this idea for factoring, we can write

$$a^{2} - b^{2} = (a + b)(a - b)$$
⁽²⁾

A **perfect square** term has a coefficient that is a square (1, 4, 9, 16, 25, 36, etc.), and any variables have exponents that are multiples of 2 (x^2 , y^4 , z^6 , etc.).

Example 1

Identifying Perfect Square Terms

For each of the following, decide whether it is a perfect square term. If it is, find the expression that was squared (called the *root*).

- **(a)** 36*x*
- **(b)** $24x^6$
- (c) $9x^4$
- (d) $64x^6$
- (e) $16x^9$

Only parts c and d are perfect square terms.

 $9x^4 = (3x^2)^2$ $64x^6 = (8x^3)^2$

🖌 CHECK YOURSELF 1

For each of the following, decide whether it is a perfect square term. If it is, find the expression that was squared.

(a) $36x^{12}$	(b) $4x^6$
(c) $9x^7$	(d) $25x^8$
(e) $16x^{25}$	

We will now use equation 2 above to factor the difference between two perfect square terms.


```
NOTE You could also write (x - 4)(x + 4). The order doesn't matter because multiplication is commutative.
```

```
Because x^2 - 16 is a difference of squares, we have

x^2 - 16 = (x + 4)(x - 4)
```

CHECK YOURSELF 2

Factor $m^2 - 49$.

Think $x^2 - 4^2$

Any time an expression is a difference of two squares, it can be factored.

Example 3
Factoring the Difference of Two Squares
Factor $4a^2 - 9$. $\uparrow \qquad \uparrow$ Think $(2a)^2 - 3^2$
So
$4a^2 - 9 = (2a)^2 - (3)^2$
=(2a+3)(2a-3)
CHECK YOURSELF 3

Factor $9b^2 - 25$.

X

The process for factoring a difference of squares does not change when more than one variable is involved.

Example 4

Factoring the Difference of Two Squares

NOTE Think $(5a)^2 - (4b^2)^2$

Factor $25a^2 - 16b^4$.

 $25a^2 - 16b^4 = (5a + 4b^2)(5a - 4b^2)$

CHECK YOURSELF 4.

Factor $49c^4 - 9d^2$.

We will now consider an example that combines common-term factoring with difference-of-squares factoring. Note that the common factor is always removed as the *first step*.

Example 5

Removing the GCF First

NOTE Step 1 Remove the GCF. Step 2 Factor the remaining binomial. Factor $32x^2y - 18y^3$. Note that 2y is a common factor, so $32x^2y - 18y^3 = 2y(16x^2 - 9y^2)$

Difference of squares

= 2y(4x + 3y)(4x - 3y)

Y CHECK YOURSELF 5

Factor $50a^3 - 8ab^2$.

Note that this is different from the sum of two squares (like $x^2 + y^2$), which never has integer factors.

Recall the following multiplication pattern.

$$(a+b)^2 = a^2 + 2ab + b^2$$

For example,

 $(x + 2)^{2} = x^{2} + 4x + 4$ $(x + 5)^{2} = x^{2} + 10x + 25$ $(2x + 1)^{2} = 4x^{2} + 4x + 1$

Recognizing this pattern can simplify the process of factoring perfect square trinomials.

Example 6

Factoring a Perfect Square Trinomial

Factor the trinomial $4x^2 + 12xy + 9y^2$. Note that this is a perfect square trinomial in which

a = 2x and b = 3y.

In factored form, we have

 $4x^2 + 12xy + 9y^2 = (2x + 3y)^2$

CHECK YOURSELF 6

Factor the trinomial $16u^2 + 24uv + 9v^2$.

Recognizing the same pattern can simplify the process of factoring perfect square trinomials in which the second term is negative.

Factoring a Perfect Square Trinomial

Factor the trinomial $25x^2 - 10xy + y^2$. This is also a perfect square trinomial, in which

a = 5x and b = -y.

In factored form, we have

 $25x^2 - 10xy + y^2 = (5x + (-y))^2 = (5x - y)^2$

K CHECK YOURSELF Z

Factor the trinomial $4u^2 - 12uv + 9v^2$.

CHECK YOURSELF ANSWERS

1. (a) $(6x^6)^2$; (b) $(2x^3)^2$; (d) $(5x^4)^2$ **2.** (m+7)(m-7) **3.** (3b+5)(3b-5)**4.** $(7c^2+3d)(7c^2-3d)$ **5.** 2a(5a+2b)(5a-2b) **6.** $(4u+3v)^2$ **7.** $(2u-3v)^2$

For each of the following binomials,	, state whether the binomial is a difference of so	quares.
1. $3x^2 + 2y^2$	2. $5x^2 - 7y^2$	ANSWERS
3. $16a^2 - 25b^2$	4. $9n^2 - 16m^2$	_2
		3.
5. $16r^2 + 4$	6. $p^2 - 45$	<u>4.</u>
7. $16a^2 - 12b^3$	8. $9a^2b^2 - 16c^2d^2$	7
		8.
9. $a^2b^2 - 25$	10. $4a^3 - b^3$	9.
		<u>10.</u>
Factor the following binomials.		<u>11.</u>
11. $m^2 - n^2$	12. $r^2 - 9$	<u>12.</u>
		<u>13.</u>
13. $x^2 - 49$	14. $c^2 - d^2$	<u>14.</u>
		<u>15.</u>
15. $49 - y^2$	16. $81 - b^2$	<u>16.</u>
		<u>17.</u>
17. $9b^2 - 16$	18. $36 - x^2$	<u>18.</u>
		<u>19.</u>
19. $16w^2 - 49$	20. $4x^2 - 25$	<u>20.</u>
		21.
21. $4s^2 - 9r^2$	22. $64y^2 - x^2$	22.
		<u>23.</u>
23. $9w^2 - 49z^2$	24. $25x^2 - 81y^2$	<u>24.</u>

Exercises

Name ____

Section _____ Date ___

ANSWERS

25.	25 $16a^2 - 49b^2$	26 $64m^2 - 9n^2$
26.	23. 104 490	20. 04111 911
27.	27. $x^4 - 36$	28. $y^6 - 49$
28.		
29.	29. $x^2y^2 - 16$	30. $m^2n^2 - 64$
30.		
31.	31. $25 - a^2b^2$	32. $49 - w^2 z^2$
32.		
33.	33. $r^4 - 4s^2$	34. $p^2 - 9q^4$
34.		
35.	35. $81a^2 - 100b^6$	36. $64x^4 - 25y^4$
36.	37. $18x^3 - 2xy^2$	38. $50a^2b - 2b^3$
37.		
38.	39. $12m^3n - 75mn^3$	40. $63p^4 - 7p^2q^2$
39.		
40.	41. $48a^2b^2 - 27b^4$	42. $20w^5 - 45w^3z^4$
41.		
42.	Determine whether each of the following trino trinomial.	omials is a perfect square. If it is, factor the
43.	43. $x^2 - 14x + 49$	44. $x^2 + 9x + 16$
44.		
45.	45. $x^2 - 18x - 81$	46. $x^2 + 10x + 25$
46.		
47.	47. $x^2 - 18x + 81$	48. $x^2 - 24x + 48$
48.		
49.	Factor the following trinomials.	
50.	49. $x^2 + 4x + 4$	50. $x^2 + 6x + 9$
51.		
52.	51. $x^2 - 10x + 25$	52. $x^2 - 8x + 16$

ANSWERS

53.
$$4x^2 + 12xy + 9y^2$$
54. $16x^2 + 40xy + 25y^2$
55. $9x^2 - 24xy + 16y^2$
56. $9w^2 - 30wv + 25v^2$

57.
$$y^3 - 10y^2 + 25y$$
 58. $12b^3 - 12b^2 + 3b$

Factor each expression.

59.
$$x^2(x + y) - y^2(x + y)$$
 60. $a^2(b - c) - 16b^2(b - c)$

61. $2m^2(m-2n) - 18n^2(m-2n)$ **62.** $3a^3(2a+b) - 27ab^2(2a+b)$

63. Find a value for k so that $kx^2 - 25$ will have the factors 2x + 5 and 2x - 5.

- **64.** Find a value for k so that $9m^2 kn^2$ will have the factors 3m + 7n and 3m 7n.
- **65.** Find a value for k so that $2x^3 kxy^2$ will have the factors 2x, x 3y, and x + 3y.
- **66.** Find a value for k so that $20a^3b kab^3$ will have the factors 5ab, 2a 3b, and 2a + 3b.
- **67.** Complete the following statement in complete sentences: "To factor a number you"
- **68.** Complete this statement: To factor an algebraic expression into prime factors means

Factor.

- (a) 2x(3x + 2) 5(3x + 2)(c) 3x(x + 2y) + y(x + 2y)(e) 4x(2x - 5y) - 3y(2x - 5y)
- (b) 3y(y-4) + 5(y-4)(d) 5x(2x-y) - 3(2x-y)

53.

 54.

 55.

 56.

 57.

 58.

 59.

 60.

 61.

 62.

 63.

 64.

 65.

 66.

$$67.$$
 $68.$

 a.

 b.

 c.

 d.

 e.

Answers

1. No **3.** Yes **7.** No **9.** Yes 5. No **11.** (m + n)(m - n)**13.** (x + 7)(x - 7)**15.** (7 + y)(7 - y) **17.** (3b + 4)(3b - 4)**21.** (2s + 3r)(2s - 3r)**19.** (4w + 7)(4w - 7)**23.** (3w + 7z)(3w - 7z)**27.** $(x^2 + 6)(x^2 - 6)$ **25.** (4a + 7b)(4a - 7b)**29.** (xy + 4)(xy - 4)**31.** (5 + ab)(5 - ab)**33.** $(r^2 + 2s)(r^2 - 2s)$ **35.** $(9a + 10b^3)(9a - 10b^3)$ **37.** 2x(3x + y)(3x - y)**39.** 3mn(2m + 5n)(2m - 5n)**47.** Yes; $(x - 9)^2$ **41.** $3b^2(4a + 3b)(4a - 3b)$ **43.** Yes; $(x - 7)^2$ **45.** No **49.** $(x + 2)^2$ **51.** $(x - 5)^2$ **53.** $(2x + 3y)^2$ **55.** $(3x - 4y)^2$ **57.** $y(y-5)^2$ **59.** $(x + y)^2(x - y)$ **61.** 2(m - 2n)(m + 3n)(m - 3n)**63.** 4 **65.** 18 67. **a.** (3x + 2)(2x - 5)

```
b. (y-4)(3y+5) c. (x+2y)(3x+y) d. (2x-y)(5x-3)
e. (2x-5y)(4x-3y)
```