```
Maths Learning Service: Revision Mathematics IA
Function Notation
Mathematics IMA
```



A function is a rule for calculating a single value $y=f(x)$ from an input value $x$. (Note: " $f(x)$ " does not mean " $f \times x$ ".)

## Examples:

(1) Consider the rule $y=f(x)=2 x+3$.

$$
\begin{array}{llll}
\text { If } & x=1 & \text { then } & f(1)=2 \times 1+3=5 \\
\text { If } & x=-3 & \text { then } & f(-3)=2 \times(-3)+3=-3
\end{array} \text { etc. }
$$

Recall that the points $(x, y)$ or $(x, f(x))$ satisfying this rule lie on a straight line. We say that the graph of the function $f(x)=2 x+3$ is a straight line.
(2) Consider the rule $f(x)=x^{2}+2 x$.

Again recalling earlier work, we know that the graph of this function is a parabola.

$$
\begin{array}{llll}
\text { If } & x=1 & \text { then } & f(1)=1^{2}+2 \times 1=3 \\
\text { If } & x=-3 & \text { then } & f(-3)=(-3)^{2}+2 \times(-3)=3
\end{array} \text { etc. }
$$

(3) Function notation allows us to input algebraic symbols and formulae as well as numbers. If $f(x)=x^{2}-1$, then
(a) $f(a)=a^{2}-1$
(b) $\quad f(x+h)=(x+h)^{2}-1$
(c) $f\left(x^{2}\right)=\left(x^{2}\right)^{2}-1=x^{4}-1$
(d) $f(\sqrt{x+1})=(\sqrt{x+1})^{2}-1=x$
(4) Consider two functions $f(x)=x^{2}$ and $g(x)=x+1$. The following composite functions can be formed
(a) $f(g(x))=f(x+1)=(x+1)^{2}$
(b) $g(f(x))=g\left(x^{2}\right)=x^{2}+1$
(c) $f(f(x))=f\left(x^{2}\right)=\left(x^{2}\right)^{2}=x^{4}$
(d) $g(g(x))=g(x+1)=(x+1)+1=x+2$

Note: The concept of composite functions is useful for understanding the Chain Rule of differentiation and inverse functions.

## Exercises

(1) If $f(x)=3 x+1$, then find the following
(a) $f(1)$
(b) $f(-2)$
(c) $f(x+\psi)$
(d) $f\left(x^{3}\right)$
(2) If $f(x)=3 x^{2}+x-2$, then find the following
(a) $f(-1)$
(b) $f\left(x^{2}\right)$
(c) $\frac{f(x+h)-f(x)}{h}$
(3) Find $f(g(x)), g(f(x)), f(f(x))$ and $g(g(x))$ for the following.
(a) $f(x)=\frac{1}{x}, \quad g(x)=x+3$
(b) $f(x)=\frac{x}{2}, \quad g(x)=2 x$
(c) $f(x)=x^{2}, \quad g(x)=\sqrt{x} \quad(x \geq 0)$

## Answers to Exercises

(1) (a) 4
(b) -5
(c) $3(x+\psi)+1$
(d) $3 x^{3}+1$
(2) (a) 0
(b) $3 x^{4}+x^{2}-2$
(c) $\frac{6 x h+h^{2}+h}{h}=6 x+3 h+1$
(3) (a) $\frac{1}{x+3}, \frac{1}{x}+3, x, x+6$
(b) $x, x, \frac{x}{4}, 4 x$
(c) $x, x, x^{4}, \sqrt[4]{x}$

