Maths Learning Service: RevisionMathematics IAFunction NotationMathematics IMA

A function is a rule for calculating a single value y = f(x) from an input value x. (Note: "f(x)" does not mean " $f \times x$ ".)

Examples:

(1) Consider the rule y = f(x) = 2x + 3.

If x = 1 then $f(1) = 2 \times 1 + 3 = 5$ If x = -3 then $f(-3) = 2 \times (-3) + 3 = -3$ etc.

Recall that the points (x, y) or (x, f(x)) satisfying this rule lie on a straight line. We say that the graph of the function f(x) = 2x + 3 is a straight line.

(2) Consider the rule $f(x) = x^2 + 2x$.

Again recalling earlier work, we know that the graph of this function is a parabola.

If x = 1 then $f(1) = 1^2 + 2 \times 1 = 3$ If x = -3 then $f(-3) = (-3)^2 + 2 \times (-3) = 3$ etc.

- (3) Function notation allows us to input algebraic symbols and formulae as well as numbers. If $f(x) = x^2 1$, then
 - (a) $f(a) = a^2 1$ (b) $f(x+h) = (x+h)^2 - 1$ (c) $f(x^2) = (x^2)^2 - 1 = x^4 - 1$ (d) $f(\sqrt{x+1}) = (\sqrt{x+1})^2 - 1 = x^4$
- (4) Consider two functions $f(x) = x^2$ and g(x) = x + 1. The following composite functions can be formed

(a)
$$f(g(x)) = f(x+1) = (x+1)^2$$

(b)
$$g(f(x)) = g(x^2) = x^2 + 1$$

(c)
$$f(f(x)) = f(x^2) = (x^2)^2 = x^4$$

(d) g(g(x)) = g(x+1) = (x+1) + 1 = x + 2

Note: The concept of composite functions is useful for understanding the Chain Rule of differentiation and inverse functions.

Function Notation

Exercises

- (1) If f(x) = 3x + 1, then find the following (a) f(1) (b) f(-2) (c) $f(x + \psi)$ (d) $f(x^3)$
- (2) If $f(x) = 3x^2 + x 2$, then find the following (a) f(-1) (b) $f(x^2)$ (c) $\frac{f(x+h) - f(x)}{h}$
- (3) Find f(g(x)), g(f(x)), f(f(x)) and g(g(x)) for the following.

(a)
$$f(x) = \frac{1}{x}$$
, $g(x) = x + 3$
(b) $f(x) = \frac{x}{2}$, $g(x) = 2x$
(c) $f(x) = x^2$, $g(x) = \sqrt{x}$ $(x \ge 0)$

Answers to Exercises

(1) (a) 4 (b) -5 (c) $3(x + \psi) + 1$ (d) $3x^3 + 1$

(2) (a) 0 (b)
$$3x^4 + x^2 - 2$$
 (c) $\frac{6xh + h^2 + h}{h} = 6x + 3h + 1$

(3) (a)
$$\frac{1}{x+3}$$
, $\frac{1}{x}+3$, x , $x+6$ (b) x , x , $\frac{x}{4}$, $4x$ (c) x , x , x^4 , $\sqrt[4]{x}$