INTEGRATING ALGEBRAIC EXPRESSIONS

To antidifferentiate algebraic expressions, we raise the power on the variable (usually x) by one, and divide the new term by the new power.

$$
\int a x^{n} d x=\frac{a x^{n+1}}{n+1}+c, \quad n \neq-1
$$

This rule applies for all algebraic expressions, including rational functions, providing that $n \neq-1$.

$$
\text { For Example: } \int x^{3} d x=\frac{x^{3+1}}{3+1}+c=\frac{x^{4}}{4}+c
$$

The antiderivative of an expression consisting of the sum/difference of a series of terms is equivalent to the sum/difference of the antiderivatives of each individual term.

$$
\text { For Example: } \int\left(x^{3}-2 x^{2}+1\right) d x=\int\left(x^{3}\right) d x-\int\left(2 x^{2}\right) d x+\int 1 d x
$$

Note:

- $\quad \mathbf{c}$ is an arbitrary constant that must be included every time an expression is antidifferentiated. The only time the arbitrary constant can be omitted is when "an antiderivative" is required.
- Expressions may be simplified by removing constants and placing them in front of the symbol of integration.

For Example: $\quad \int(a x) d x=a \int x d x$

$$
\int\left(a x^{3}+b x^{2}+c x\right) d x=a \int x^{3} d x+b \int x^{2} d x+c \int x d x
$$

For example: $\quad \int\left(2 x^{3}\right) d x=2 \int\left(x^{3}\right) d x$

INTEGRATING EXPRESSIONS - GENERAL APPROACH

Step 1: Rewrite all terms as powers on x.
For example: $\int\left(x^{3}+6 \sqrt{x}\right) d x=\int\left(x^{3}+6 x^{\frac{1}{2}}\right) d x$
Step 2: Bring terms involving x in the denominator (bottom of a fraction) to the top, by changing the sign on the power.

For example: $\frac{1}{x^{2}}=x^{-2}$. Note: $\frac{1}{6 x^{2}}=\frac{x^{-2}}{6}$.
Step 3: Simplify expressions so that terms are separated by addition and subtraction and then antidifferentiate each term individually. Alternatively, reduce expressions down to 1 term only (use log and index laws).

Step 4: Antidifferentiate.
Step 5: Re-write the answer using positive powers. Bring terms with negative powers in the numerator (top of a fraction) to the bottom by changing the sign on the power.

Step 6: State restrictions on the values of x.

Note:

- VCAA will deduct 1 mark if you forget to include the "dx".
- If asked to find "an" antiderivative, no " c " is required.

Example 1

Integrate the following expressions.
(a) $\int\left(5 t^{8}-2 t^{4}+t+3\right) d t$

Raise the power on the variable (usually x) in each term by one and divide the new term by the new power.

$$
\int\left(5 t^{8}-2 t^{4}+t+3\right) d t=\frac{5}{9} t^{9}-\frac{2}{5} t^{5}+\frac{1}{2} t^{2}+3 t+c
$$

(b) $\int 6 x^{2}\left(x^{4}-1\right) d x$

Expand brackets:

$$
\int 6 x^{2}\left(x^{4}-1\right) d x=\int\left(6 x^{6}-6 x^{2}\right) d x
$$

Raise the power on the variable (usually x) in each term by one and divide the new term by the new power.

$$
\begin{aligned}
& =\frac{6 x^{7}}{7}+\frac{6 x^{3}}{3}+c \\
& =\frac{6 x^{7}}{7}+2 x^{3}+c
\end{aligned}
$$

(c) $\int \frac{x^{2}+6 x+9}{x+3} d x$

Factorise and simply by cancellation:

$$
\int \frac{x^{2}+6 x+9}{x+3} d x=\int \frac{(x+3)^{2}}{(x+3)} d x=\int(x+3) d x
$$

Antidifferentiate:

$$
=\frac{x^{2}}{2}+3 x+c
$$

(d) $\int\left(x^{1.4}-5 x^{1.5}\right) d x$

Raise the power on the variable (usually x) in each term by one and divide the new term by the new power.

$$
\begin{aligned}
\int\left(x^{1.4}-5 x^{1.5}\right) d x & =\frac{x^{2.4}}{2.4}-\frac{5 y^{2.5}}{2.5}+c \\
& =\frac{5 x^{2.4}}{12}-2 y^{2.5}+c
\end{aligned}
$$

(e) $\int\left(\frac{4}{3 x^{2}}+\sqrt{x}\right) d x$

Remove the square root symbol:

$$
\int\left(\frac{4}{3 x^{2}}+\sqrt{x}\right) d x=\int\left(\frac{4}{3 x^{2}}+x^{1 / 2}\right) d x
$$

Bring x terms to the numerator by changing the sign on the power of x :

$$
=\int\left(\frac{4 x^{-2}}{3}+x^{1 / 2}\right) d x
$$

Antidifferentiate:

$$
\begin{aligned}
& =\frac{4 x^{-1}}{3 \times-1}+\frac{x^{3 / 2}}{3 / 2}+c \\
& =\frac{-4 x^{-1}}{3}+\frac{2 x^{3 / 2}}{3}+c
\end{aligned}
$$

Write the answer with positive powers:

$$
=\frac{-4}{3 x}+\frac{2 x^{3 / 2}}{3}+c
$$

(f) $\int\left(\frac{1}{x \sqrt{x}}\right) d x$

Remove the square root symbol:

$$
\int\left(\frac{1}{x \sqrt{x}}\right) d x=\int \frac{1}{x \cdot x^{1 / 2}} d x=\int \frac{1}{x^{3 / 2}} d x
$$

Bring x terms to the numerator by changing the sign on the power of x :

$$
=\int x^{-3 / 2} d x
$$

Antidifferentiate:

$$
\begin{aligned}
& =\frac{x^{-3 / 2+1}}{-3 / 2+1}+c \\
& =\frac{x^{-1 / 2}}{-1 / 2}+x
\end{aligned}
$$

Write the answer with positive powers:

$$
=\frac{-2}{\sqrt{x}}+c
$$

(g) $\int\left(\frac{x^{4}+2}{x^{2}}\right) d x$

Write each term in the numerator over the denominator and simplify:

$$
\int\left(\frac{x^{4}+2}{x^{2}}\right) d x=\int\left(\frac{x^{4}}{x^{2}}+\frac{2}{x^{2}}\right) d x=\int\left(x^{2}+\frac{2}{x^{2}}\right) d x
$$

Bring x terms to the numerator by changing the sign on the power of x :

$$
=\int\left(x^{2}+x^{-2}\right) d x
$$

Antidifferentiate:

$$
=\frac{x^{3}}{3}+\frac{x^{-1}}{-1}+c=\frac{x^{3}}{3}-x^{-1}+c
$$

Write the answer with positive powers:

$$
=\frac{x^{3}}{3}-\frac{1}{x}+c
$$

(h) $\int x^{m-1} x^{m} d x$

Rewrite the product as a single term. As the bases are the same, we can add powers.

$$
\int x^{m-1} x^{m} d x=\int x^{m-1+m} d x=\int x^{2 m-1} d x
$$

Raise the power on the variable (usually x) in each term by one and divide the new term by the new power.

$$
=\frac{x^{2 m-1+1}}{2 m-1+1}+c=\frac{x^{2 m}}{2 m}+c
$$

(i) $\int\left(\frac{2 x^{1-3 m}}{5 x^{2 m^{2}}}\right) d x$

Rewrite the quotient as a single term. As the bases are the same, we can subtract powers.

$$
\int\left(\frac{2 x^{1-3 m}}{5 x^{2 m^{2}}}\right) d x=\int\left(\frac{2 x^{1-3 m-2 m^{2}}}{5}\right) d x
$$

Raise the power on the variable (usually x) in each term by one and divide the new term by the new power.

$$
=\frac{2 x^{1-3 m-2 m^{2}+1}}{5\left(1-3 m-2 m^{2}+1\right)}+c=\frac{2 x^{2-3 m-2 m^{2}}}{5\left(2-3 m-2 m^{2}\right)}+c
$$

