
Physical Properties of Carboxylic Acids

Physical Properties of Carboxylic Acids

• Carboxylic acids hydrogen bond to themselves to form a **dimer**:

• Carboxylic acids also form hydrogen bonds to water molecules:

10

9

© TSFX & ATAR Central 2019

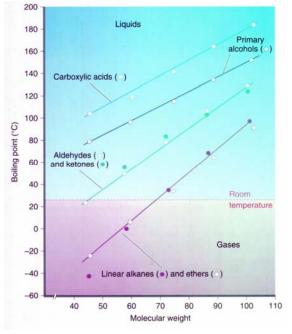
Physical Properties of Carboxylic Acids

- Since carboxylic acids can form more than one set of hydrogen bonds, their boiling points are usually higher than those of other molecules of the same molecular weight (MW).
- Low-MW carboxylic acids are generally liquids at room temp. (often, they are somewhat oily); higher-MW carboxylic acids are generally waxy solids.
- Carboxylic acids with 12 to 20 carbon atoms are often referred to as **fatty acids**, since they are found in the triglycerides in fats and oils (more later).
- Short-chain carboxylic acids are also generally more soluble in water than compounds of similar MW, since they can hydrogen bond to more than one water molecule.

11

Physical Properties of Carboxylic Acids

- As the number of carbons in a carboxylic acid series becomes greater, the boiling point increases and the solubility in water decreases.
- Many carboxylic acids that are liquids at room temperature have characteristically sharp or unpleasant odors.
 - Ethanoic acid/acetic acid is the main ingredient in vinegar.
 - Butanoic acid is partially responsible for the odor of locker rooms and unwashed socks.
 - Hexanoic acid is responsible for the odor of Limburger cheese.
- Like most acids, carboxylic acids tend to have a sour taste (e.g., vinegar, citric acid, etc.)


12

Common Name	Structural Formula	BP (°C)	MP (°C)	Solubility (g/100 mL H ₂ O)
Formic acid	H—CO ₂ H	101	8	Infinite
Acetic acid	CH ₃ —CO ₂ H	118	17	Infinite
Propionic acid	CH ₃ CH ₂ —CO ₂ H	141	-21	Infinite
Butyric acid	$CH_3(CH_2)_2$ — CO_2H	164	-5	Infinite
Valeric acid	$CH_3(CH_2)_3$ — CO_2H	186	-34	5
Caproic acid	$CH_3(CH_2)_4$ — CO_2H	205	-3	1
Caprylic acid	$CH_3(CH_2)_6$ — CO_2H	239	17	Insoluble
Capric acid	$CH_3(CH_2)_8$ — CO_2H	270	32	Insoluble
Lauric acid	CH ₃ (CH ₂) ₁₀ —CO ₂ H	299	44	Insoluble
Myristic acid	$CH_3(CH_2)_{12}$ — CO_2H	Dec.	58	Insoluble
Palmitic acid	$CH_3(CH_2)_{14}$ — CO_2H	Dec.	63	Insoluble
Stearic acid	$CH_3(CH_2)_{16}$ — CO_2H	Dec.	71	Insoluble

 Table 5.2
 Physical properties of some carboxylic acids

Boiling Points of Various Functional Groups

Figure 5.4 The boiling points of carboxylic acids compared to 1° alcohols, aldehydes and ketones, ethers and alkanes.

14

Comparing Physical Properties

Boiling Point:			V	Water Solubility:		
4	Carboxyli	c acid		Ca	rboxylic acid	
	Alcohols			Alcohols		
	Aldehydes/Ketones			Aldehydes/Ketones		
	Ethers			Ethers		
	Alkanes			Alkanes		
	Name	Molecular weight		oiling oint	Solubility in wate	

Name	weight	point	Solubility in water
Pentane	72 g/mol	35°C	Insoluble
Diethyl ether	74 g/mol	35°C	Insoluble
Butanal	72 g/mol	76°C	7.1 g / 100 mL H ₂ O
1-Butanol	74 g/mol	118°C	9.1 g / 100 mL H ₂ O
Propanoic acid	74 g/mol	141°C	Infinite

15

Examples: Predicting Physical Properties

- Arrange the following compounds in order of increasing boiling point. (All of the compounds have about the same molecular weight.)
 - 1-pentanol
 - hexane
 - butanoic acid
 - pentanal
- Which member of each of the following pairs of compounds would you expect to have a higher solubility in water?
 - -2-butanone or propanoic acid
 - hexanoic acid or ethanoic acid

16

