Topic: Alkane Hydrocarbons

Objective: What are Alkanes, and how do they function in chemistry?

Alkane Family:

1. The **simplest** form of **hydrocarbon** is the **alkane** series, also called the paraffin family. Alkanes are made up of a single chain of carboncarbon (C-C) bonds with two (a middle carbon) or three (an end carbon) hydrogen (H) atoms attached to each carbon atom.

FORMULA	Name	Boiling Point	Structural Formula
CH4	methane	-161°C	н — с — н н — с — н н
С ₂ Н ₆	ethane	-89	$ \begin{array}{cccc} \mathbf{H} & \mathbf{H} \\ \mathbf{H} - \mathbf{C} - \mathbf{C} - \mathbf{H} \\ \mathbf{H} & \mathbf{H} \end{array} $
С ₃ Н8	propane	-44	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
C ₄ H ₁₀	butane	-0.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
C5H12	pentane	36	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
с ₆ н ₁₄	hexane	68	Add 1 carbon and 2 hydrogens to the middle of pentane
C7H15	heptane	98	Add 1 carbon and 2 hydrogens to the middle of hexane
C ₈ H ₁₈	octane	125	Add 1 carbon and 2 hydrogen s to the middle of heptane
С ₉ Н ₂₀	nonane	151	Add 1 carbon and 2 hydrogens to the middle of octane
С ₁₀ Н ₂₂	decane	174	Add 1 carbon and 2 hydrogen s to the middle of non ane

- 2. Look at the boiling point listed for each alkane group. As the molecule gets **larger**, the boiling point **increases**. This is due to the increasing number of London Dispersion forces, and with it more London Dispersion strength.
- 3. Methane (CH₄) is the only hydrocarbon that is *only* an alkane, since it only has one carbon atom.
- 4. The general **formula** for an **alkane** is C_nH_{2n+2} . If you know the number of carbon atoms (prefix), then you double the prefix and add two to get the number of hydrogen atoms for that alkane.
- 5. What is the molecular formula for octadecane? Well, this one is not on your chart, but octadec- is the prefix for 18, so this is an 18 carbon alkane. Using the general formula C_nH_{2n+2} , we can write the molecular formula for ocatadecane:

18 carbons = n
$$\rightarrow C_{(18)}H_{(2 \times 18 + 2)} = C_{18}H_{38}$$

Unsaturated Hydrocarbons:

- An unsaturated hydrocarbon is a hydrocarbon that contains at least one double (C=C) or triple (C≡C) carbon to carbon bond.
- ii. Unsaturated hydrocarbons are anything EXCEPT alkanes.

